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abstract

This dissertation expands the applicability of program synthesis to data
analysis, with a focus on scalability and privacy. Data is abundant and em-
powering, but barriers-to-access such as specialized technical knowledge
or privacy requirements limit access. Program synthesis—the automatic
generation of programs satisfying user intent—enables non-technical users
to circumvent these barriers.

To provide access to large-scale data analysis techniques, we introduce
Bigλ, a synthesis tool that utilizes higher-order sketches to generate scal-
able MapReduce programs from input-output examples. Higher-order
sketches divide the work between mappers and reducers, and we intro-
duce a verification technique that proves if a reducer is associative and
commutative: a sufficient condition for the pipeline to be robust in the
face of network-induced non-determinism. We demonstrate the efficacy
of Bigλ by synthesizing a host of data analysis benchmarks on real-word
data sets from a small number of examples.

We then study the problem of automatically synthesizing privacy-
respecting programs using Zinc, a tool that automatically synthesizes
probabilistic and provably-private programs. We base our technique on
an effective inversion of the linear dependent type system DFuzz that tracks
the resources consumed by a program, and hence its privacy cost. Zinc
directs the synthesis towards programs satisfying a given privacy budget
by using symbolic context constraints and subtyping constraint abduction to
reason about the privacy-preserving behavior of partial programs. We
then show Zinc’s ability to automatically synthesize privacy-preserving
data analysis queries, as well as recursive differential privacy mechanisms
from the literature.

To reason about the properties of probabilistic programs, such as those
produced by Zinc, we introduce trace abstraction modulo probability, a proof



x

technique for verifying high-probability guarantees. Our proofs over-
approximate the set of program traces using failure automata, finite-state
automata that upper-bound the probability of failing to satisfy a specifica-
tion. We automate proof construction by a synthesis-enabled reduction
of probabilistic reasoning to logical reasoning, which allows us to ap-
ply classic interpolation-based proof techniques. We evaluate our proof
technique by proving properties of probabilistic programs drawn from
the differential privacy literature. Our evaluation is the first instance of
automatically-established accuracy properties—which contain symbolic
inputs, parameterized distributions, and infinite state spaces—for these
algorithms.

Finally, we discuss program synthesis with equivalence reduction, a
methodology that utilizes equational specifications over a given synthe-
sis domain to reduce the search space and improve performance. By
leveraging classic and modern techniques from term rewriting, we use
equations to induce a canonical representative per equivalence class of pro-
grams. We show how to design synthesis procedures that only consider
canonical representatives, thus pruning the search space. We conclude by
illustrating how to implement equivalence reduction using efficient data
structures, and demonstrating the significant reductions it can achieve in
overall synthesis time.
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1 introduction

The future is already here — it’s just not evenly distributed.

— William Gibson (The Economist, December 4, 2003)

This thesis is about program synthesis for effective data analysis, with
a focus on scalabilty and privacy. Modern society collects information on
nearly every imaginable facet of life via mechanisms such as e-commerce,
social media, electronic medical records, and the ever-present smartphones
in the pockets of 3.5 billion people. Access to this digital panopticon is
highly valued: data, and the interpretation thereof, is empowering. Given
the importance of data to our society, it is imperative that we strive for
responsible data democratization, both to magnify the benefits of every byte,
but also to limit data access asymmetries that can lead to manipulation
and oppression.

Merely making information public is insufficient. The complexity of
data storage and access mechanisms—clusters and databases and dis-
tributed computing platforms—are a large burden-of-knowledge standing
in the way of effective data use. To complicate matters, much sought-after
data is about people, and we have a responsibility to ensure open data does
not invite abuse or intrude upon their rights, chief among which is the
right to privacy. On this front, recent advancements in differential privacy
provide a way forward: by carefully adding noise to queries, differential
privacy mechanisms allow for the provably secure release of sensitive
information.

Unfortunately, differential privacy is hard to get right. Industry tech-
niques are dependent on complicated one-off inference procedures (Er-
lingsson et al., 2014), and even privacy experts occasionally implement
incorrect variants of common mechanisms (Lyu et al., 2016). Even framing
a query requires error-prone analysis of possible information leakages. For
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all the benefits, differential privacy represents another significant burden-
of-knowledge in the way of effective data use.

Advances in automation stand ready to help: program synthesis—the
automatic construction of programs from easily-provided user intent—
provides non-programmers with an interface for computation. By con-
strucing scalable and privacy-aware queries from simple examples, and
automating analyses and proofs of said queries, program synthesis lets
users frame questions and analyze the results without having to know
a thing about protocols or backends. This dissertation, in lowering the
burden-of-knowledge neessary for effective access of data, advances the
state-of-the-art in program synthesis by constructing synthesis tools that
address the challenges in scalably accessing and understanding data in a
privacy-preserving way.

1.1 Challenges in Enabling Effective Data
Access

Program synthesis, by converting easily-specified user intent into non-
trivial programs, promises to be a computational interface for those with
limited programming experience. Developments in program synthesis
have brought powerful automation techniques across a variety of domains
within reach of the average computer user (Gulwani, 2011; Barowy et al.,
2015; Le and Gulwani, 2014; Osera and Zdancewic, 2015; Feser et al., 2015;
Perelman et al., 2014; Yaghmazadeh et al., 2017; Wang et al., 2017a; Feng
et al., 2017). However, each new program synthesis domain requires
specialization in order to raise the level of abstraction to the point of
usability. In the context of effective access of data, this means an end-user
should not have to worry about the details of data access mechanisms and
privacy enforcement strategies, leaving their focus solely on the asking
the questions and understanding the answers
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Framing the Question

The goal of program synthesis is to convert an easily specified user intent—
e.g., input-output examples—into a full-fledged, executable program. De-
pending on the use-case, however, the quality of a synthesized program is
dependent on more than just consistency with user intent. To meet our
goal, we wish to enable individuals to (i) effectively interact with large-
scale data processing tools, and (ii) frame questions in privacy-preserving
ways, without requiring expertise in data-parallel computation and differ-
ential privacy.

A data-parallel computation tool like MapReduce (Dean and Ghe-
mawat, 2004) hides fiddly details like load balancing, but still requires
the user to craft a program in terms of higher-order data-parallel opera-
tors like map and reduce, and choosing the wrong operators or division-
of-labor between them can introduce bottlenecks or network-induced
non-determinism. Other tools, such as Airavat (Roy et al., 2010) and
PINQ (McSherry, 2009), provide privacy-preserving data access by letting
developers provide queries in the form of programs. However, not all
privacy-preserving functions are equivalent: a program that answers the
desired question, but also releases unnecessary information, is punished
by having more noise added. Users are expected to understand how func-
tion composition and application impacts the final privacy guarantee; a
difficult task for privacy experts (Lyu et al., 2016), let alone the average
non-programmer.

Interpreting Privacy-Preserving Answers

For well-known privacy mechanisms, such as the Laplace and exponential
mechanisms (Dwork and Roth, 2014), expert scrutiny has precisely quanti-
fied the impact the addition of noise has on the utility of the result. This
quantification is framed as a high-probability guarantee: the output satisfies
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some accuracy condition φ, which might, e.g., bound the difference be-
tween the returned result and the optimal value, except with some failure
probability p. But proving high-probability guarantees over probabilistic
programs is tedious work, and unfortunately beyond the ability of the
average non-technical user. Automated tools often focus on restricted,
tractable models of probabilistic programs (see the surveys by Baier et al.
(2018) and Katoen (2016)), or rely on the fact that programs are closed and
have finite state space (Kwiatkowska et al., 2011; Dehnert et al., 2017), nei-
ther of which is true in the case of differential privacy, where distributions
often rely on symbolic inputs and are difficult to integrate.

1.2 Contributions

In advancing the state-of-the-art of program synthesis for effective, privacy-
aware data access, this dissertation makes the following contributions:

C1 We present a compositional program synthesis algorithm that automatically
constructs data-parallel programs in the MapReduce framework (Chap-
ter 3). Our implementation—Bigλ—constructs distributed programs that
scale well with data and available computational power. To ensure pro-
grams are resistant to network-induced non-determinism, we apply hy-
perproperty verification techniques to prove that reducers form commuta-
tive semigroups Section 3.4). Lastly, we empirically demonstrate Bigλ’s
efficiency and applicability by synthesizing a range of distributed data
analysis tasks on real-world datasets (Section 3.5).

C2 We extend type-directed synthesis to a privacy-tracking linear dependent
type system to construct a sensitivity-directed synthesis algorithm (Chap-
ter 4). The algorithm employs symbolic context constraints and subtyping
constraint abduction to direct the search towards programs satisfying a pro-
vided privacy budget (Section 4.3). We describe how sensitivity-directed
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synthesis can: (i) synthesize privacy-preserving data-analysis queries
using higher-order combinators, and (ii) synthesize recursive differen-
tial privacy mechanisms from the literature (Section 4.4). We implement
our algorithm in a tool called Zinc and demonstrate the importance of
sensitivity-direction on synthesis performance (Section 4.6).

C3 We present an automated proof technique for probabilistic accuracy prop-
erties based on trace abstraction (Chapter 5). The technique uses Craig
interpolation to construct failure automata (Section 5.4) from proofs of cor-
rectness of probabilistic traces, which it generates via a reduction to a
non-deterministic constraint-based synthesis problem (Section 5.5). The
proof technique is implemented and used to verify differentially private
programs, where accuracy properties include symbolic distribution pa-
rameters and parametric inputs (Section 5.6).

C4 We incorporate domain knowledge in the form of equational specifications
into program synthesis via equivalence reduction (Chapter 6). To do so, we
utilize modern techniques from theorem proving to impose normal forms
on programs, and incorporate normality-checking into bottom-up and top-
down synthesis algorithms (Sections 6.3 and 6.5). Lastly, we empirically
evaluate the impacts of equivalence reduction to (i) demonstrate the ne-
cessity of fast normality checking algorithms and efficient data structures
such as perfect discrimination trees (McCune, 1992), and (ii) understand the
impacts of equivalence reduction on program synthesis across different
domains and algorithms (Section 6.7).

1.3 Structure of this Dissertation

In Chapter 2, we introduce preliminary definitions and notation. The meat
of the contributions are in Chapters 3 to 6. Based on the reader’s interest,
we recommend the following two sub-dissertations:
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SD1 For those primarily interested in program synthesis, we recommend Sec-
tions 2.2 and 2.3 for preliminary remarks, and then Chapters 3, 4 and 6.

SD2 For a focus on differential privacy, read instead Section 2.1 for an overview,
followed by Chapters 4 and 5.

Finally, we provide closing remarks and future directions in Chapter 7.
The contents of this thesis are based on four papers (Smith and Al-

barghouthi, 2016, 2019b; Smith et al., 2019; Smith and Albarghouthi, 2019a),
indicated at the beginning of a section when relevant.
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2 preliminary notions

In this chapter, we present some preliminary notions to frame the work
to follow. In Section 2.1, we give a brief overview of differential privacy.
Section 2.2 provides an introduction to the construction and use of term
algebras. Finally, Section 2.3 concretizes the program synthesis problem.

2.1 Differential Privacy in a Nutshell

To better understand the challenges inherent in data access via privacy-
preserving mechanisms, we must understand what differential privacy
promises and how it upholds those promises. What follows in this chapter
is a high-level view of differential privacy; for a more in-depth presentation,
we recommend the work of Dwork and Roth (2014).

Differential privacy is framed as a robustness property of probabilis-
tic programs: the same query on similar inputs should produce similar
outputs.

Definition 2.1 (Differential Privacy). Let A be a space with metric dA, and
let B be a space. For ε, δ ∈ R>0, a probabilistic function f : A → B is (ε, δ)-
differentially private ((ε, δ)-dp) if and only if, for all x,y ∈ A with dA(x,y) 6 1
and for all S ⊆ B, we have

Pr [f(x) ∈ S] 6 eε · Pr [f(y) ∈ S] + δ

When δ is 0, we say f is ε-differentially private.

The strictness of the privacy-preservation is determined by the param-
eters ε and δ—the smaller they are, the more privacy is preserved. In the
rest of this work, we focus on the more restrictive case where δ = 0.

The subtlety of Definition 2.1 comes, in part, from determining the
appropriate metric dA. While metrics over some domains are natural —
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e.g., R and N with the Euclidean metric — we care about enforcing privacy
over data sets, which require some care to model mathematically.

Definition 2.2 (Data Sets). We will represent data sets as multisets of rows,
and denote the space of all data sets as D.

D has the following metric: for x,y ∈ D,dD(x,y) = |x4y|, the cardinality
of the symmetric difference of x and y.

There are many metrics over multisets. The one chosen encodes the
assumption that each row in a data set represents an individual. To pro-
tect individual privacy, we want queries to be robust to the presence of an
individual’s data.

Benefits of Differential Privacy

Differential privacy is an attractive notion of privacy. In the face of linkage
attacks and de-anonymization, the fact that differential privacy is immune
to post-processing means that the results of a query, once set loose into the
public, cannot yield more information than what was originally released,
even with the most stubborn of attacks.

Theorem 2.3 (dp Immune to Post-Processing). Let A and B be spaces, with
dA a metric for A, and let f : A→ B be an ε-dp probabilistic function.

Let g : B→ C be any deterministic function. Then g ◦ f is ε-dp.

To best utilize such a guarantee, it is important to understand what
impact the information originally released can have. In traditional discus-
sions on privacy, impacts are often framed as a strong dichotomy: either
an individual is protected, or their data is compromised. Such discussions
don’t offer much of a path forward when it comes to regulatory action,
as the responsible response to the all-or-nothing framing of impacts is to
cloister data and prevent any unauthorized access.
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Fortunately, differential privacy admits a notion of quantitative privacy
loss parameterized by ε. We will illustrate this with an example: suppose
Alex is an individual who is contacted by the Fictional research group,
who would like to use Alex’s medical data for a study. Fictional is federally
funded, and consequently mandated to ensure their analysis is ε-dp—that
is, Alex knows there is some ε-dp function f : D → R representing the
study, where R is the space of all possible outcomes of the research. Some
of these outcomes are more desirable than others. Alex represents this fact
with a utility function u : R→ R+, which assigns high (resp., low) weights
to desirable (resp., undesirable) outcomes.

To decide what to do, Alex considers two possible outcomes: (i) Alex
gives Fictional their data, and they run their analysis on a, which includes
Alex’s data, or (ii) Alex withholds their data, and Fictional runs their
analysis on b, which is identical to a sans Alex’s data. Surely, dD(a,b) =
1, and so Alex is confident the privacy guarantee will hold. Alex then
computes:

Er∼f(a) [u(r)] =
∑
r∈R

u(r) · Pr [f(a)] r

6
∑
r∈r

u(r) · eε · Pr [f(b))] r

= eε · Er∼f(b) [u(r)]

Regardless of the outcome of the study, Alex’s two choices result in ex-
pected utility differing at most by a multiplicative factor of eε. If the
published ε is small enough, Alex may decide that the personal risk is
worth it and give their data to Fictional.

Understanding Functions through Sensitivity

Differential privacy is a property of probabilistic programs, but most
analyses one wants to perform are deterministic. To make a deterministic



10

function private, we must strategically add noise in order to enforce the
guarantee of Definition 2.1. Privacy mechanisms that convert deterministic
functions typically require some information about the function, usually
in a form of robustness called sensitivity:

Definition 2.4 (Sensitivity). Let A and B be spaces with metrics dA and dB,
respectively. For c ∈ R>0, a deterministic function f : A→ B is c-sensitive if
and only if:

∀x,y ∈ A.dB(f(x), f(y)) 6 c · dA(x,y)

Note that sensitivity is an upper-bound: a c-sensitive function is also
c ′-sensitive, for every c ′ > c. Another important property of sensitivity
is that it composes multiplicatively: given a c1-sensitive function g and a
c2-sensitive function f, the composition g ◦ f is (c1 · c2)-sensitive.

Privacy Enforcing Mechanisms

The most natural way to enforce differential privacy is to add randomly-
sampled noise to a real-valued function. When that noise is drawn from
the Laplace distribution, we have the Laplace mechanism:

Definition 2.5 (Laplace Mechanism). Let A be a space with metric dA. Let
c, ε ∈ R>0, and let f : A→ R be a c-sensitive function.

The Laplace mechanism LapMech(f,a, ε) selects and returns an output
from the distribution Lap(f(a), c/ε), where Lap(m, s) is the Laplace distribu-
tion with meanm and scale d.

The mechanism LapMech(f,a, ε) is ε-dp.

Of course, the Laplace mechanism is only effective with real-valued
functions whose utility is relatively continuous: if varying an answer by a
small amount destroys the value of the information (such as in auction
pricing), or the answer is categorical (how do we add noise to categories?),
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we need a different mechanism. For these conditions, the exponential
mechanism is more useful:

Definition 2.6 (Exponential Mechanism). LetA and B be spaces with metrics
dA and dB, respectively. Let c, ε ∈ R>0, and let u : A → B → R be a utility
function c-sensitive in the second argument.

The exponential mechanism ExpMech(B,u,a, ε) selects and returns an
output b ∈ B with probability proportional to

exp
(
ε · u(a,b)

2c

)
The mechanism ExpMech(B,u,a, ε) is ε-dp.

Intuitively, the exponential mechanism weights each possible output
by bow useful it is, before smoothing the weights and sampling outputs
from the resulting proportional distribution. There is a slight semantic gap
between the computation performed by ExpMech(. . . ) and the operation
of u; as such, the exponential mechanism is used primarily by algorithm
designers, and not end users attempting to access data. We will see in
Section 4.4, however, how program synthesis can bridge this gap.

Other mechanisms focus on optimizing particular workloads or en-
forcing different notions of privacy. We will discuss them as they become
relevant.

2.2 The Terminology of Terms

Based on the use case, the form of the artifacts generated by program
synthesis can vary wildly. Here, we will introduce a framework for the
work that follows built out of the formalisms of term algebras.

Term algebras contain and construct terms. Pinning down programs
is fiddly, as one needs to simultaneously consider syntax, semantics, and
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implementation; in contrast, terms are purely syntactic objects. They are,
in fact, the most syntactic object one can have in a sense that will be made
precise in Section 2.2. We think of terms as trees whose nodes are labeled
by variables, constants, and operations without any associated interpretation.

Signatures and Function Symbols

Constants and operations are grouped together into a signature, which
defines something similar to an interface: each constant and operation is
named, and annotated with the sorts (or types) of their inputs and their
output.

Definition 2.7 (Signature). A signature is a pair (S,Σ) comprising:

1. A set of sorts S, and

2. An (S∗×S)-indexed set of function symbols Σ =
⊔
w∈S∗,s∈S Σw,s, where each

Σw,s is disjoint.

When clear from context, we will refer to signature (S,Σ) simply as Σ.

We will define some additional notation for function symbols: for
f ∈ Σw,s, we define the arity of f (written ar (f)) as |w|. A function symbol
c ∈ Σε,s (that is, with ar (c) = 0) is a constant. Lastly, we will use the
alternate notation f : w→ s to indicate (i) the existence of a set Σw,s and
(ii) f’s inclusion in that set.

For an example, consider a simple arithmetic framework which only
has 0, a successor function, and a binary addition operator:

ΣA := ({n} , {0 : ε→ n, Succ : n→ n,+ : nn→ n})

where n is a sort representing the natural numbers. It is important to
stress that the sort is not inhabited by anything, and the function symbols
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0, Succ, and + do not have any operational interpretation beyond their
input and output sorts. That will come shortly.

A more interesting construction can be had via context-free grammars
(CFGs): non-terminals become sorts, and the function symbols are derived
from the production rules. In our application of signatures, this construc-
tion is equivalent to interpreting a CFG as a regular tree language, where
the language defined by the grammar is over derivation trees instead of
strings.

Definition 2.8 (Signature of a CFG). Let G be a context-free grammar with
non-terminals N, a disjoint set of terminals T , and production rules of the form
n→ w, where n ∈ N and w ∈ (N ∪ T)∗.

The signature of G, denoted ΣG, is the pair (N,ΣG), where ΣG is populated
as follows: let n→ w be a production rule, and let w ′ be the string constructed
by dropping all terminal symbols from w. Then rn→w ∈ ΣGw ′,n, where rn→w is
a fresh function symbol.

Algebras

If a signature is an interface, an algebra is an implementation. By defin-
ing how the function symbols operate over some target domain, called
the carrier, an algebra represents a model of a signature and provides a
computational interpretation.

Definition 2.9 (Algebra). Let (S,Σ) be a signature. A Σ-algebra (A, J·K) is a
pair comprising:

1. An S-indexed carrier set A =
⋃
s∈SA (s), and

2. An interpretation function J·K that converts every function symbol f ∈ Σw,s

into a function JfK : Aw → A (s), where Aw = A (s1) × A (s2) × . . .A (sn) if
w = s1s2 . . . sn.

When clear from context, we will refer to the Σ-algebra (A, J·K) simply by A.
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Consider the signature ΣA: to provide the usual interpretation to the
function symbols, we could construct the ΣA-algebra (A, J·K) where (i) the
carrier set A has a single index, n, and A (n) = N, and (ii) J·K converts the
function symbols as follows:

J0K = 0

JSuccK (n) = n+ 1

J+K (x,y) = x+ y

While our algebra interprets the function symbols in ΣA as expected, there
is nothing in the structure ofΣA that restricts the semantics to coincide, e.g.,
with the Peano axioms. That is to say, we could instead define J+K (x,y) =
x, which is not commutative. Either interpretation is a valid model of ΣA.

The Term Algebra

In a term algebra, the computational interpretation of a signature is the
construction of a term: the carrier objects are syntactic terms, and the func-
tion symbols are interpreted as term constructors.

Definition 2.10 (Term Algebra). Let (S,Σ) be a signature. The term algebra
(TΣ, J·K) is the Σ-algebra defined as follows:

1. Carrier Set: The carrier set TΣ is defined recursively, as follows:

1. For each sort s ∈ S, and each constant c ∈ Σε,s, c ∈ TΣ (s)
2. For each function symbol f ∈ Σw,s, where w = s1s2 . . . sn, and for each
ti ∈ TΣ (si), f(t1, t2, . . . , tn) ∈ TΣ (s)

2. Interpretation: For each function symbol f ∈ Σw,s, where w = s1s2 . . . sn, and
for each ti ∈ TΣ (si), we define JfK (t1, t2, . . . , tn) = f(t1, t2, . . . , tn).
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So the term algebra for our arithmetic signature — TΣA — contains
terms built only out of the function symbols 0, Succ, and +:

0 Succ(0) 0 + 0 0 + Succ(0) Succ(0 + 0) . . .

and when we interpret a function symbol, we treat it as a term constructor,
e.g.:

J+K (0, 0 + Succ(0)) = 0 + (0 + Succ(0))

Why Terms?

Our interest in terms stems primarily from their relation to every other
Σ-algebra. To frame this relation precisely, we will view the class of Σ-
algebras as a category:

Definition 2.11 (Category of Σ-Algebras). Let Σ be a signature, and let A
and B be two Σ-algebras. We say a function h : A→ B between the carrier sets
of A and B is a homomorphism if, for every w ∈ S∗, s ∈ S, and f ∈ Σw,s, the
following diagram commutes:

A B

A B

h

JfKA JfKB

h

Denote by Alg (Σ) the category whose objects are Σ-algebras and whose arrows
are homomorphisms.

Algebra homomorphisms are maps between algebras that commute
with function application. While many pairs of algebras will have mean-
ingful homomorphisms between them, the homomorphisms between the
term algebra and all other algebras are special, because (i) they are guar-
anteed to exist, and (ii) they are unique. More precisely, term algebras are
initial:
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Theorem 2.12 (Term Algebras are Initial). Let Σ be a signature. The term
algebra TΣ is initial in Alg (Σ): for every Σ-algebra A, there is a unique homo-
morphism heval : TΣ → A, which we refer to as the evaluation homomorphism.

As a consequence of being initial, term algebras are the only algebras
that have unique homomorphisms to every other algebra. Interestingly, the
evaluation homomorphism’s primary computational power comes solely
from its ability to commute over function applications. As an example,
consider the natural ΣA-algebra A and a term 0 + Succ(0) to be evaluated:

heval(0 + Succ(0)) = heval(J+KT
ΣA

(J0KT
ΣA

, JSuccKT
ΣA

(J0KT
ΣA
))) (2.1)

= J+KA (J0KA , JSuccKA (J0KA)) (2.2)

= 1 (2.3)

Equation (2.1) is justified by the construction of TΣA—the only way terms
are generated is by application of the term constructors. Equation (2.2)
follows directly from the fact that heval is a homomorphism, and Equa-
tion (2.3) is simple evaluation in the algebra A.

The fact that term algebras are initial is the reason why we care about
terms. The ability to unambiguously convert a term into any other algebra
via the evaluation homomorphism means that, as we require different
computational interpretations of the terms being synthesized—the default
semantics, a logical encoding, or even a weight function—we simply con-
struct the relevant algebra and get the ability to evaluate terms into objects
in that algebra for free.

Incomplete Terms

With a term algebra, our only mechanism for generating terms is bottom-up:
we take an n-arity function symbol f and n appropriately-sorted terms
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t1, . . . , tn before constructing the newer, larger term JfK (t1, . . . , tn). There
are times, however, when constructing terms is better done top-down. In-
stead of only gluing existing terms together, we would like to construct
terms with holes in them, to be filled in later. We need to extend our
signature with variables.

Definition 2.13 (Free Term Algebra). Let (S,Σ) be a signature, and let X =⊔
s∈S X (s) be an S-sorted set of variable symbols disjoint from all symbols

in Σ. The free term algebra generated by Σ and X (denoted (TΣ(X), J·K)) is
constructed as follows:

1. Carrier Set: The carrier set TΣ(X) is defined recursively:

1. For each sort s ∈ S and variable x ∈ X (s), x ∈ TΣ(X) (s)
2. For each sort s ∈ S and constant c ∈ Σε,s, c ∈ TΣ(X) (s)
3. For each function symbol f ∈ Σw,s, where w = s1s2 . . . sn, and for each
ti ∈ TΣ(X) (si), f(t1, t2, . . . , tn) ∈ TΣ(X) (s)

2. Interpretation: The interpretation J·K is defined as in Definition 2.10.

Do note that our term algebras TΣ introduced in Definition 2.10 are
equivalent to the free term algebra TΣ(∅). We refer to this variable-laden
construction as a free term algebra precisely because it is the free Σ-algebra
generated by X:

Theorem 2.14 (Free Term Algebras are Free). Let Σ be a signature, and X an
S-sorted set of variables.
TΣ(X) is the free Σ-algebra generated by X, by which we mean: let A be a Σ-

algebra, and let v : X → A be an assignment function mapping variables to the
carrier set of A. Then v uniquely extends to a homomorphism v∗ : TΣ(X) → A

such that the following diagram commutes:
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X TΣ(X)

A

id

v
v∗

In other words, we can introduce variables into terms (by using TΣ(X)),
assign those variables to other terms using v : X → TΣ(X), and acquire
(for free) the substitution v∗ : TΣ(X) → TΣ(X). Using variables, we can
formalize some notions that will aid us in synthesizing terms later.

Contexts and Boxes

Suppose we have done the work to build a term t bottom-up, and now
we would like to refer to a sub-term of t (call it s) in the context of t. More
precisely, we would like to decompose t into t = C [s], where C is a context.

Definition 2.15 (Term Contexts). Let Σ be a signature, and let� =
⊔
s∈S {�s}

be an S-sorted set of variables.
A context C is a term in TΣ(�) that contains exactly one instance of a vari-

able, which we will simply refer to as �.
Let s is a term in TΣ, and denote by v : �→ TΣ the assignment mapping the

variable � that occurs in C to s. We will write C [s] to denote the term v∗(C) ∈
TΣ, where v∗ is the unique homomorphism induced by applying Theorem 2.14 to
v.

We will liberally make use of the context notation to select and replace
sub-terms.

Wildcard

When constructing terms top-down, we need a mechanism for represent-
ing an incomplete term. We will mark holes in the term with specially-
labeled variables called wildcards (written  ). Although our terminology
may be unique, the idea is not: representing incomplete programs as terms
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with wildcards is similar to the refinement trees of Osera and Zdancewic
(2015).

Definition 2.16 (Wildcards and Incomplete Programs). LetΣ be a signature,
and letW be an infinite, S-sorted set of wildcards (denoted  ).

A term in TΣ( ) is said to be complete if it contains no wildcards (and
incomplete otherwise). A complete term is uniquely identifiable with a term in
TΣ, via an extension of the empty assignment using Theorem 2.14. When clear
from context, we will refer to complete and incomplete programs without making
reference to the free term algebra.

Unless otherwise stated, all wildcards in a term are distinct from all other
variables.

If required by an application, wildcards can be annotated to carry infor-
mation (see, for example, the wildcards in Chapter 4). Such annotations
are a convenient mechanism to pass relevant context to synthesis sub-
problems, and can make algorithms and implementations much cleaner.

2.3 Concretizing Program Synthesis

We can now formalize program synthesis tasks and their solutions:

Definition 2.17 (Program Synthesis). A program synthesis problem is a
tuple (Σ,φ,h) given by:

1. A signature Σ characterizing a search space,

2. A correctness constraint φ characterizing the solution space, and

3. A qualitative objective h to be minimized.

A term t ∈ TΣ is a solution to (Σ,φ,h) if and only if t satisfies the correctness
constraint (written t |= φ) and minimizes h(t) compared to other solutions.
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That is, t is a solution if and only if:

t ∈ argmint∈TΣ,t|=φ h(t)

While program synthesis problems are framed as optimization tasks,
existing optimization techniques are rarely applicable, due to the highly
symbolic and discrete nature of the search space TΣ. Instead, we often
rely on clever enumeration to generate candidate solutions in a smart
order. Starting in Chapter 3 we will see how one can approach efficiently
enumerating TΣ—in the rest of this section, we will examine various forms
of (i) the correctness constraint and (ii) the qualitative objective.

Correctness Constraints

Unlike many optimization tasks, in program synthesis we have the ability
to check solutions against a correctness constraint that is often provided
as a logical formula acting over some encoding of programs. While issues
of undecidability do creep in, most synthesis tools will only provide a
solution to the user if there is proof that the program satisfies the constraint.

Correctness constraints cannot usually be stated and left as-is: one
must also provide a mechanism for deciding the judgement t |= φ, which
depends on the form ofφ. Fortunately, our search space is the initial object
in Alg (Σ), and so we can make use of the immediate translation to any
Σ-algebra that may be relevant.

Examples Arguably the most common form of correctness constraint—
Gulwani (2011); Albarghouthi et al. (2013); Gulwani et al. (2011, 2012);
Harris and Gulwani (2011); Osera and Zdancewic (2015); Smith and Al-
barghouthi (2016, 2019b); Osera and Zdancewic (2015); Polozov and Gul-
wani (2015); Feng et al. (2017) are just a few instances—examples serve as
a user-friendly and low-cost way of defining intent. In their most straight-
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forward presentation, examples are pairs 〈i,o〉 that require a solution p
satisfy p(i) = o. In most cases, checking examples requires the ability to
evaluate terms.

Types When function symbols represent operations in a system imbued
with types, we should reasonably expect that the desired solution is well-
typed. In simple cases, type-checking is easy (Feser et al., 2015; Smith
and Albarghouthi, 2016) and serves to prune nonsense terms from the
search, but more sophisticated type systems encode information about
the problem domain (Osera and Zdancewic, 2015; Frankle et al., 2016;
Smith and Albarghouthi, 2019b; Polikarpova et al., 2016), in which case
type-checking often needs to be woven tightly into the enumeration.

Logical Constraints Instead of defining the behavior of a solution on a
few points, some synthesis tools allow users to encode desirable properties
into a logical constraint (Solar-Lezama et al., 2006; Wang et al., 2017b; Alur
et al., 2013; Polikarpova and Sergey, 2019). Many are based on proof
search techniques, or use a counterexample-guided loop to iteratively
refine solutions.

The Qualitative Objective

Because we already have our correctness constraint inφ, in many synthesis
applications the qualitative objective is closer to a regularizer than it is
a loss function. In practice, most synthesis techniques integrate h into
the enumeration of candidates, so that programs are produced in close to
h-increasing order. Others, however, view optimization as the primary
goal and structure the search to guarantee optimization of the qualitative
objective (Hu and D’Antoni, 2018; Bornholt et al., 2016).
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Program Size Folk wisdom suggests that small programs generalize
better than large programs, and so are more desirable. Nearly every
synthesis tool will consider solutions from smallest to largest, although
some are less strict about the order, and others will jump the queue to peer
deeper into the search space (Alur et al., 2015).

Performance Constraints Superoptimization is often framed as a syn-
thesis task, where solutions are code snippets that (i) match the semantics
of the original code and (ii) have higher performance than the original
(Phothilimthana et al., 2016). Other tools apply statistical techniques like
Monte Carlo Markov Chain methods to heuristically direct the search
towards high performance solutions (Schkufza et al., 2013).
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3 synthesizing data-processing programs

Current data production—estimated to be about 1.7mb per person per
second—necessitates a focus on scalability. Developments in distributed
data access mechanisms, such as Google’s original MapReduce (Dean
and Ghemawat, 2004) and related techniques (White, 2015; Zaharia et al.,
2012; Yu et al., 2008), do much to let developers construct data processing
pipeline that scale well in the cloud while abstracting away issues like net-
work topology and node failures. Yet, they still require users to construct
programs using higher-order operators like map and reduce. We expect
this interface to be beyond the scope of the average non-developer: choos-
ing the wrong operators, or the wrong workload balance between them,
can easily result in inefficiencies, bottlenecks, and even network-induced
non-determinism. In this chapter, we address the challenge of synthe-
sizing efficiently scalable data processing programs from user-provided
examples. The contents of this chapter are based on the work of Smith
and Albarghouthi (2016).

3.1 Data-Parallel Programming Frameworks

Since the introduction of Google’s MapReduce system in Dean and Ghe-
mawat’s seminal paper (Dean and Ghemawat, 2004), a number of powerful
systems that implement and extend the MapReduce paradigm have been
proposed, e.g., Hadoop (White, 2015), Spark (Zaharia et al., 2012), and
Dryad (Yu et al., 2008), amongst others (Flink; Halperin et al., 2014; Alsub-
aiee et al., 2014). For the purposes of our work here, we present a generic
view of data-parallel programs as functional programs.

In its simplest form, a MapReduce program contains an application of
map followed by an application of reduceByKey:

map m ◦ reduceByKey r
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where m has type τ → (k, v) and r has type v → v → v. Given a list of
elements of type τ, map applies m in parallel to each element to produce a list
of key-value pairs (k, v). Then, for each key produced bym, reduceByKey re-
ceives a list of elements of type v—all values associated with the key—and
aggregates (or folds) each such list using r. The result of this computation
is a list of key-value pairs of type (k, v), where each key appears once.

Suppose we are given a list of words and we would like to count the
number of occurrences of each word in the list. We can do this with the
following function:

let count = map m ◦ reduceByKey r
where

m w = (w, 1)
r a b = a + b

For each input word w, the mapper emits the key-value pair (w, 1); the
reducer then sums the values associated with each word, producing a
list [(w1, v1), . . . , (wn, vn)] containing each unique word wi and its corre-
sponding count vi. So far, this is good old functional programming; in
a distributed environment, however, execution and data are partitioned
amongst many nodes. This is illustrated and described in Figure 3.1, where
count is applied to a list of words [w1, . . . ,wn]. Notice how the shuffle phase
routes key-value pairs, of the form (wi, 1), to their respective reducers.
In this process, values of a given key wi may arrive out of order. In a
sense, the reducer views the list as an unordered collection, and therefore
may produce different results depending on the order in which it applies
the binary reduce function r.

To ensure that the reducer produces the same value regardless of the
shuffle phase, we must ensure that the binary function passed to the
reducer—in this example, r a b = a + b—is associative, commutative, and
closed on the type the reducer operates on. Indeed, this is what the APIs
for Apache Spark (Spark) and Twitter Summingbird (Boykin et al., 2014)
expect. Commutativity and associativity ensure determinism despite the
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. . .w1 w2 w3 wn

(w1, 1) (w2, 1) (w3, 1) (wn, 1)

Reducer Reducer Reducer

. . .

(”abc”, 10) (”pldi”, 99)(”xyz”, 3)

Output of reducers
each unique word from input

with number of its occurrences

Map phase
The mappers apply a function m to each element
wi of the input list. This process is done in parallel
by different nodes in a cluster or processors on a
single machine.}

}
Shuffle phase

}
Reduce phase
In parallel, reducers iteratively apply a binary func-
tion r to values of each key to compute a single
value—in our example, the sum of all values.

. . .. . .

The shuffle phase routes key–value pairs with the
same key to the reducers. For instance, w1 = w3,
and therefore both (w1, 1) and (w3, 1) are routed to
the same reducer. Results may arrive out of order.

Input
a list of words

Output of mappers
a list of word–number pairs

Figure 3.1: High-level view of a MapReduce computation on a simple
example

shuffle phase. They also allow the runtime environment to apply r in
parallel and at the mappers before transferring results to the reducers, in
order to reduce the transferred data bottleneck.

We presented a simple data-parallel program: a mapper followed by a
reducer. In many modern frameworks, e.g., Spark and Dryad, we can have
more sophisticated combinations of mappers and reducers (e.g., iterative
MapReduce) and various forms of data-parallel operations. Here, we
will focus on programs made of arbitrary compositions of data-parallel
operations presented as higher-order sketches.

Wordcount: The Fibonacci of MapReduce

Suppose you want to compute the number of times each word appears
in Wikipedia. With many gigabytes of articles, the only way to do this
efficiently is via distribution. To synthesize this task, you can supply our
algorithm with a fairly simple example describing word counting, e.g.:

["hello bucky", "hello badgers"]
↪→ [("hello",2),("bucky",1),("badgers",1)]

where the left side of ↪→ is the input (two strings representing simple
documents) and the right side is the intended output.
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The fascinating bit is that, even with a very simple example that can fit
in one line, we can synthesize a word-counting program that can easily
scale to gigabytes of documents. Specifically, our technique, when instanti-
ated with appropriate constants, synthesizes the following:

let wc = flatMap ms ◦ map mp ◦ reduceByKey r
where

ms doc = split doc " "
mp word = (word,1)
r c1 c2 = c1 + c2

The synthesized program is a composition of three data-parallel operations:
(i) a flatMap that maps each document into the list of words appearing in it
(using split), and flattens (concatenates) all resulting lists into a single list,
(ii) a map that transforms each word w into the string-integer pair (w,1), and
(iii) a reduceByKey that computes a count of occurrences of each word.

Note that for our input-output example, the following argument to
reduceByKey would suffice:

r c1 c2 = c1 + 1

However, this will be rejected by our algorithm, since this reduce function
does not form a commutative semigroup over integers. Specifically, using
this function results in a non-deterministic program that may produce
incorrect results for larger inputs. Suppose, for instance, that our input has
four occurrences of "hello". Then, for the key "hello", the reducer would
receive the list [1, 1, 1, 1]. Applying the binary function r in parallel (or as
a combiner) could yield the wrong results, e.g., by applying r as follows:

1 1 1 1

2 2

3

r 1 1 = 2

r 2 2 = 3

Our algorithm ensures that synthesized programs are deterministic, de-
spite the shuffle phase and parallel applications of binary reduce functions
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String concatenation
Associative but not commutative

"a" "b"

"ab"

"a""b"

"ba"

Arithmetic mean
Commutative but not associative

1 3 4

2

0 1 3 4 0

03.5

1.751

} Non-deterministic output
due to shuffle phase

} Non-deterministic output due
to order of parallel application of
binary reduce function

1.375

2

2

Figure 3.2: Non-associative/commutative binary reduce functions

(see Section 3.4). Figure 3.2 provides two additional examples to illustrate
the effects of non-commutative or non-associative reduce functions.

Histograms

Now, suppose that you would like to plot a histogram of the page views of
Wikipedia articles (available in Wikipedia log dumps (Wikipedia)) using
three bins: less than 100 views, 100-10,000 views, and greater than 10,000
views. To construct a histogram, we need a procedure that computes the
number of articles in each bin. We can supply the following example:

[("pg1", 99),("pg2",20000),("pg3",200),("pg4",300)]
↪→ [(bin1,1), (bin2,2), (bin3,1)]

The inputs specify a set of pages and their views; the outputs specify
each of the three bins in the histogram (< 100, 100-10,000, and > 10,000)
as bin1, bin2, and bin3.

Here, our technique would synthesize the following:
let hist = map m ◦ reduceByKey r
where

m p = if (snd p) < 100 then (bin1, 1)
else if (snd p) < 10000 then (bin2, 1)
else (bin3, 1)

r c1 c2 = c1 + c2
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Component name : type description

map : (α→ β)→ mset [α]→ mset [β]
Applies a function f in parallel to each element in a multiset, producing a new multiset.

flatMap : (α→ mset [β])→ mset [α]→ mset [β]
Applies a function f (that produces a multiset) to each element in a multiset and returns union

of all multisets.

reduce : (α→ α→ α)→ mset [α]→ α
Continuously applies a binary function f in parallel to pairs of elements in a multiset, producing

a single element as a result.

reduceByKey : (α→ α→ α)→ mset [(β,α)]→ mset [(β,α)]
Similar to reduce, but applies the binary function f to the multiset of values of a given key,

resulting in a multiset of key–value pairs, with one value per key.

filter : (α→ bool)→ mset [α]→ mset [α]
In parallel, removes elements of multiset that do not satisfy a Boolean predicate.

Table 3.1: Set of data-parallel components CDP from Apache Spark (vari-
ables α and β are implicitly universally quantified)

where snd returns the second element of a pair, and bin1, bin2, and bin3 are
values of an enumerated type. Observe that map places each page in the
appropriate bin and reduceByKey counts the number of page in each bin.

3.2 Higher-Order Sketches and the Synthesis
Domain

The language in which we synthesize programs is a restricted, typed λ-
calculus parameterized by a set of components, or predefined functions.
We first fix an ML-like type system. Let ι1, ι2, . . . be countably-many base
types, and let α1,α2, . . . be countably-many type variables. Then a type can
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be either a monotype or a polytype:

monotype τ := ι (base type)

| α (type variable)

| τ1 → τ2 (function construction)

| τ1 × τ2 (product construction)

| mset [τ] (multiset construction)

polytype σ := ∀~α. τ (polymorphic construction)

We use C to denote a set of components—user-provided functions anno-
tated with monotypes—andX to denote a countable set of program variables.
A program is a p-sorted object in the ΣC-term algebra, where (S,ΣC) is the
signature (Definition 2.7) given by:

S := {p} (the program-sort)

ΣC := {x : ε→ p | x ∈ X} (variables as programs)

t {c : ε→ p | c ∈ C} (components)

t {absx : p→ p | x ∈ X} (abstraction)

t {app : pp→ p} (application)

Note the treatment of abstraction and application as function symbols.
When clear, we will write λx.p instead of absx(p) and p(p) (or even
p(p,p, . . . ,p) instead of app(p,p) (and app(p, app(p, app(. . . ,p)))). Lastly,
as is common for higher-order data-parallel operators, we will use ◦ to
denote reverse composition: (g ◦ f)(x) ≡ f(g(x)).

Typing Rules

As our type system is the classic Hindley-Milner type system with function,
product, and multiset type constructors, we will elide the usual inference
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rules. For typing components from C, we defer to the type annotations
provided by the user. The usual judgement Γ ` p : τ has the expected
meaning: given the assumptions in type context Γ , program p can be given
type τ. We will also use:

Definition 3.1. Let p ∈ TΣC(W). We will use the judgement p ∈ τΓ to indicate
that there exists a substitution σ from type variables to variable-free monotypes
such that σΓ ` p : στ.

Canonical Algebra

Let HM(C) be the Hindley-Milner λ-calculus with (i) encodings for all base
types ι1, ι2, . . . , (ii) function, product, and multiset type constructors, and
(iii) λ-term implementations for each component c ∈ C consistent with
the base type encodings. Then HM(C) is a ΣC-algebra, with the carrier
set containing all λ-terms, and the interpretation that maps each function
symbol in ΣC to the appropriate λ-term constructor.

Now, let P be any programming language capable of emulating HM(C),
and treat P as a super-algebra of ΣC. By emulation, there exists an algebra
homomorphism that embeds λ-terms into P. We will treat P as our canon-
ical algebra for the rest of this work: by Theorem 2.12, there is a unique
homomorphism that embeds TΣC terms into P, which must exactly capture
the semantics of HM(C).

Higher-Order Sketches and Data-Parallel Components

A higher-order sketch (HOS) is an incomplete (Definition 2.16) and well-typed
program. For practical purposes, a HOS will typically be a composition of
data-parallel components, such as map and reduceByKey. To make this formal,
we restrict HOSs to be an incomplete program built from components in
CDP, where CDP is a set of data-parallel components.
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We curated CDP using data-parallel components that mimic the pri-
mary operations offered by Apache Spark (Spark). CDP components are
described and exemplified in Table 3.1. Note that our restricted language
does not exploit advanced cluster-programming features needed to maxi-
mize performance for complex workloads.

An important point to make here is that Spark operates over Resilient
Distributed Datasets (RDDs) (Zaharia et al., 2012), a data abstraction that
represents a collection of elements partitioned and replicated amongst
various nodes in a cluster. This representation is incredibly important for
the scalability of systems like Spark; however, for the purpose of program
synthesis, it suffices to model an RDD of elements of a given type τ as a
multiset of τ, written mset [τ].

Data-Parallel Synthesis Tasks

A data-parallel synthesis task S is given as a triple (E,C,H), where:

1. E = {(ii, ii)}ni=1 is a finite set of input-output examples: pairs of values in
the canonical algebra such that each ii (respectively, each oi) has the same
type.

2. C is a set of components. We assume all functions f ∈ C are provided with
an interpretation that is terminating and referentially transparent.

3. H is a set of HOSs over CDP.

Each synthesis task S defines a correctness constraint (Definition 2.17),
denoted φS, as follows:

Definition 3.2 (Solutions to Correctness Constraint). Let S = (E,C,H) be
a synthesis task, and let φS be the induced correctness constraint. A program p

(e.g., a p-sorted term in the ΣC∪CDP-term algebra) is a solution to φS, denoted
p |= φS, if and only if:
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1. There is an h ∈ H such that p is a completion of h—that is, there exists an
assignment from wildcards to terms v :W → TΣC such that v∗(h) = p.

2. ∀(i,o) ∈ E, JpK (i)→∗ o, where J·K is the interpretation function of the canoni-
cal algebra induced by C, and→∗ denotes finitely-many evaluation steps.

3. The program p is deterministic, regardless of how reduce and reduceByKey
operate (see Section 3.4).

Intuitively, a solution to a synthesis task is a deterministic program p

that, when applied to any input example ii, produces the corresponding
output example oi. Further, p is a completion of one of the HOSs in H.

3.3 Compositional Synthesis Algorithm

Given a synthesis task S = (E,C,H), our goal is to complete on of the HOSs
in H such that the result is a solution of S. For practical purposes, we
assume input-output examples in E are monotyped and variable-free.

To compute a solution of S, our algorithm employs two cooperating
phases—synthesis and composition—that act as producers and consumers,
respectively.

1. Synthesis Phase (Producers): Initially, the algorithm infers the type of terms
that may appear for each wildcard in H. For instance, it may infer that  
needs to be replaced by a term of type int→ int. Thus, for each inferred
type τ, the synthesis phase will produce terms of type τ.

2. Composition Phase (Consumers): For each h ∈ H, the composition phase
attempts to find an assignment v :W → TΣC from wildcards to complete
programs such that v∗(h) is a solution of S. To construct the map v, this
phase consumes results produced by the synthesis phase.

To implement the two phases, the algorithm maintains two data struc-
tures: (i) M, a map from types and typing contexts to sets of (potentially
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Figure 3.3: High-level illustration of Bigλ synthesis algorithm

incomplete) programs of the given type, and (ii) C, a set of complete,
well-typed programs that are candidate solutions to the synthesis task.
Informally, the synthesis phase populatesMwith programs of inferred
types, while the composition phase scavengesM to construct candidate
solutions and insert them in C. This algorithm is best illustrated through
an example.

A Walkthrough of Compositional Synthesis

Suppose our goal is to synthesize the wordcount example from Section 3.1,
and that we have the following two HOSs, written as program terms:

let h_1 i = (map  1 ◦ reduceByKey  2) i
let h_2 j = (flatMap  3 ◦ map  4 ◦ reduceByKey  5)

Assume we’ve been given a set of examples E, where the inputs have
type mset [int] and the outputs have type mset [(string, int)]. The synthe-
sis algorithm determines the type of programs that need to be synthesized
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for the various wildcards  i. Specifically, it will determine that:

 1 : string→ (string, int)  4 : α→ (string, int)

 2 : int→ int→ int  5 : int→ int→ int

 3 : string→ mset [α]

Note that, for  4, we are looking for programs of type τ→ (string, int),
where τ is any variable-free monotype: we know that  4 should be re-
placed by a function that returns a string-integer pair, but as we do not
know what type of argument it should take we need to consider all possi-
bilities.

The algorithm detects that  5 is the same type as  2, and thus will
create one entry in M for both wildcards (although we might have to
rename variables in the HOSs to achieve the same typing context). This
ensure we do not duplicate work for wildcards of the same type, even if
they appear in different HOSs.

Figure 3.3 shows the map M, where each key corresponds to the in-
ferred type of one or more of the wildcards in the HOSs. Each value
in M is a set of programs of a given type. For instance, we see that for
int→ int→ int,M contains two programs.

Producers populate each setM(τΓ ) with programs in τΓ (Γ is the typing
context, described later). Consumers queryM with the goal of replacing
the wildcards in H with complete programs. For instance, consumers
might complete the HOS h2 as follows, using programs from appropriate
locations inM to fill the wildcards  {3,4,5}:

 3 ← fun x -> split x " "
 4 ← fun x -> (x, 1)
 5 ← fun x -> fun y -> x + y

This results in the same program we saw in Section 3.1, which is a solution
to the wordcount task.
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The Algorithm

The algorithm is presented in Figure 3.4 as a set of inference rules that
update M and C. The algorithm uses the rules (Init) and (InitM) to
initialize the mapM as follows: for each wildcard  appearing in a HOS
h ∈ H, the algorithm infers a type τ for  , along with a typing context
Γ . The typing context contains all f ∈ C, as well as all variables in the
scope at  . For example, consider the HOS h : λx. (map  ) i, and suppose
that our input-output examples are both of type mset [int]. Then, the
function Infer ( ,h) detects that  must have the type int → int, and
that the variable i of type mset [int] is in scope. Note that Infer (·, ·) can
be implemented using standard Hindley-Milner type inference.

Synthesis Phase

The synthesis rules — (PVar), (PApp), and (PAbs) — construct programs
of a given type τ under context Γ . This is a top-down synthesis process: it
starts with an incomplete program and gradually replaces its wildcards
with complete terms. Being type-directed, synthesis rules maintain the
invariant that, for all p ∈M(τΓ ), p ∈ τΓ . As we shall see, these rules can
synthesize every possible complete program for a given type and context.

Rule (PVar) replaces a wildcard  in some program p with a vari-
able that is in scope at the location of  . For instance, suppose p is the
program λx. f( ), then (PVar) may replace  with x, or another variable
that is in scope. We use the auxiliary function InScope ( ,p) to denote
the set of variables in scope at  in p (which include variables in context
Γ ). Rule (PApp) replaces a wildcard with a function application f from
components Σ. The arguments of f are fresh wildcards. Finally, the rule
(PAbs) introduces a λ-abstraction.

Example 3.3. Suppose that we wanted to synthesize a program of type int →
int and that the program p := λx. is in M(τΓ ). Then, using p, (PVar) can
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construct q := λx. x, which can be of the desired type int→ int.

Example 3.4. Suppose that we want a program of type τ1 → τ2 → τ3. Suppose
also that p := λx. is in M(τΓ ). Then, (PAbs) can construct a new program
q := λx. λy. from p by adding an additional λ-abstraction. Now, to complete
q, we need to replace  with a term of type τ3.

Composition Phase

This phase composes programs inM to synthesize a program p that is a
solution to the synthesis task. We use two rules to define this phase. First,
for a HOS h ∈ H, the rule (Cons) attempts to find a completion of h by
finding a program p ∈M(τΓ ) for each wildcard of type τ and context Γ in
h. If this results in a program that is consistent with the type τI → τO (the
type of input-output examples), then we consider it a candidate solution
and add it to the set C.

The rule (Verify) picks a candidate program p from C and checks that
(i) p |= E and (ii) p is deterministic, using the function Determ (·). If the rule
applies, then p is a solution to the synthesis task (Definition 3.2). For this
section, we assume that Determ (·) is an oracle that determines whether,
for every input, the program produces the same output for any order of
application of the binary reduce functions in reduce and reduceByKey, if
used in p. In Section 3.4, we present a sound implementation of Determ (·).

Soundness and Completeness

The following theorem states that the algorithm is sound.

Theorem 3.5 (Soundness). Given a synthesis task S = (E,Σ,H), if the syn-
thesis algorithm returns a program p, then p is a solution to S (as per Definition
3.2).
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Initialization rules
(Init)

M← ∅ C← ∅

h ∈ H τ, Γ = Infer ( ,h) τΓ 6∈ Dom(M)
(InitM)

M(τΓ )← { }

Synthesis phase (producers)

p [ ] ∈M(τΓ ) x ∈ Scope( ,p) p [x] ∈ τΓ
(PVar)

M(τΓ )←M(τΓ ) ∪ p [x]

p [ ] ∈M(τΓ ) c : τ1 → · · · → τn → τ ∈ C
p [c( 1, . . . , n)] ∈ τΓ { i}i fresh

(PApp)
M(τΓ )←M(τΓ ) ∪ p [c( 1, . . . , n)]

p [ ] ∈M(τΓ ) p [λv. ′] ∈ τΓ  ′ and v are fresh
(PAbs)

M(τΓ )←M(τΓ ) ∪ p [λv. ′]

Composition phase (consumers)

h ∈ H v :W → TΣ ∀ ∈ h. τ, Γ = Infer ( ,h)⇒ v( ) ∈M(τΓ )
(Cons)

C← C ∪ v∗(h)

p ∈ C p |= E Determ (p) p : τI → τO
(Verify)

p is a solution to synthesis task

Figure 3.4: Inference rules defining the Bigλ synthesis algorithm



38

The algorithm, as presented, is non-deterministic. To ensure complete-
ness, we need to impose a notion of fairness on rule application. A fair
schedule is an infinite sequence of rules c1, c2, . . . , where if at any point i
in the sequence some rule c is applicable on some set of parameters, and
c has not yet been applied to those parameters, then c applied on those
parameters eventually appears in the sequence. A fair execution is an
application of rules under a fair schedule. The following theorem states
completeness of the algorithm, relative to existence of an oracle Determ (·)
and existence of a solution.

Theorem 3.6 (Relative completeness). Given a task S = (E,Σ,H) with a
solution, a fair execution will find some solution p of S in finitely-many rule
applications.

Determinization and Optimality

Smaller programs are desirable in inductive synthesis, as they are con-
sidered more likely to generalize (Albarghouthi et al., 2013; Osera and
Zdancewic, 2015; Feser et al., 2015). Given a per-component weight func-
tion w : C→ N and a constant k > 0, we can define a ΣC-algebra where
sort p = N and:

J K := 0 JxK := k (for x ∈ X) JcK := w(c) (for c ∈ C)
JabsxK (w) := k+w JappK (w1,w2) := w1 +w2

An optimal execution is a fair execution where (i) synthesis rules produce
programs inM in order of increasing weight, and (ii) composition rules
compose candidate solutions in C and check them in order of increasing
size. Finding an optimal execution is made feasible by the fact that the
weight algebra operates additively. In Section 3.5, we describe how we
practically implement an optimal schedule.

The proofs of Theorems 3.5 and 3.6 are given in Appendix A.1.
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3.4 Commutative Semigroup Reducers

We will now provide a sound implementation of the oracle Determ (·) used
in Section 3.3. To ensure that synthesized programs are deterministic, a
sufficient condition is that each binary function r : τ→ τ→ τ, synthesized
as an argument to reduce or reduceByKey, forms a commutative semigroup
over τ.

Definition 3.7 (Commutative semigroup (CSG)). A semigroup is a pair
(S,⊗), where S is set of elements, ⊗ : S × S → S is an associative binary
operator over elements of S, and S is closed with respect to ⊗. A commutative
semigroup (CSG) is a semigroup (S,⊗) where ⊗ is also commutative.

We say that ⊗ forms a CSG over S if (S,⊗) is a CSG.

Note that this condition is sufficient, but not necessary. To see why,
consider the following function:

let r x y = max (abs x) y

This is not a commutative function, as r -3 2 = 3 but r 2 -3 = 2. However,
suppose we know that rwill only ever operate on positive integers, perhaps
as an artifact of the mapper, and always returns a positive integer. One
can show that r forms a CSG over positive integers, and can thus operate
deterministically in a distributed environment.

To check the necessary conditions, we would need a fine-grained
type for the reducer—refinement types (Freeman and Pfenning, 1991), for
instance—that specifies the range of values on which it is invoked. While
this would enable us to encode that r only operates over positive integers,
fine-grained types necessitate the use of a heavyweight type system and
the ability to reason about all operations of the synthesized program, not
just reducers. In our experience, this is unnecessary.

We employ a two-tiered strategy to prove that a reducer forms a CSG:
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1. Dynamic Analysis: First, using the input-output examples, we run the
synthesized program simulating every possible shuffle and order of appli-
cations of binary reduce functions. Any reduce functions that fail to form
a CSG are rejected.

2. Static Analysis: If our dynamic analysis finds no evidence that a reduce
function does not form a CSG, we apply a verification phase that checks
whether a reduce function is a CSG by encoding it as a first-order SMT
formula.

Even though our dynamic analysis might explore exponentially-many
executions, in practice we are given a small enough set of examples that
exploring all possible evaluation orderings is feasible. The aggressive
filtering the dynamic analysis provides dramatically reduces the number
of times we apply our static analysis, which requires expensive satisfiability
checking in an external SMT solver.

Hyperproperty Verification Condition

Commutativity and associativity are considered hyperproperties (Clarkson
and Schneider, 2010): they require reasoning about multiple executions of
a function. Specifically, commutativity is a 2-safety property, as it requires
two executions, while associativity is a 4-safety property. We will exploit
this fact to encode the static analysis portion of our CSG check into a single
verification problem using the self-composition technique (Zaks and Pnueli,
2008; Barthe et al., 2004).

We encode a binary reduce function r as a ternary relation R(i1, i2,o),
where i1 and i2 represent the parameters of r, and o represents its return
value. Then we know that r forms a CSG over its input type if and only if
the following formula VCR is valid:

VCR := ∀V .ϕcom ∧ϕassoc ⇒ ψCSG
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where

ϕcom := R(i1, i2,o1)∧ R(i2, i1,o2)

ϕassoc := R(o1, i3,o3)∧ R(i2, i3,o4)∧ R(i1,o4,o5)

ψCSG := o1 = o2,∧o3 = o5

V = {i1, i2, i3,o1, . . . ,o5}

The formula ϕcom encodes two executions of r with flipped arguments,
i1 and i2, for checking commutativity. Formula ϕassoc encodes three execu-
tions of r, despite associativity being a 4-safety property, by reusing one
of the executions in ϕcom. Finally, ψCSG encodes the correctness condition
for r to form a CSG.

Theorem 3.8 (VC correctness). Given a binary function r : τ → τ → τ and
its encoding R as a ternary relation, then (τ, r) is a CSG if and only if VCR is
valid.

The proof of Theorem 3.8 is given in Appendix A.2.
To finish implementing our analysis, we need to convert a binary func-

tion r into the corresponding ternary relation R. Since r is binary, it is of the
form λi1. λi2. e, where e is a synthesized term. We make the simplifying
assumption that e uses no higher-order components. As is standard (Suter
et al., 2011; Kneuss et al., 2013; Jha et al., 2010; Gulwani, 2011), we assume
that each component c ∈ C has a corresponding encoding Rc(a1, . . . ,an,o)
provided by an expert. We will encode r as R (i1, i2,o) using the function
Enco (e), defined below, in a manner analogous to other encodings of
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functional and imperative programs (Suter et al., 2011; Kneuss et al., 2013):

Enco (ii) := (o = ii)

Enco (f) := Rf(o)

Enco (f (p1, . . . ,pn)) := Rf(a1, . . . ,an,o)∧
n∧
i=1

Encoi (pi)∧ ai = oi

where {a1, . . . ,an,o} are fresh variables, constructed uniquely in every
recursive call to Enc (·). All variables other than i1, i2 and the top-most o
are implicitly existentially quantified.

Example 3.9. The algorithm Enc (·) traverses a program p recursively, con-
structing a logical representation Rf for each sub-term f. Consider, for example,
the following binary reduce function:

let r i_1 i_2 = max i_1 i_2

We use Enco (max(i1, i2)) to construct the logical representation of this func-
tion. Here, the third case of Enc (·)matches and we get the following relation over
the variables i1, i2, and o:

∃a1,a2,o1,o2.Rmax(a1,a2,o)∧
∧
i∈{1,2}

oi = ii ∧ ai = oi

where

Rmax(a1,a2,o) ≡ (a1 > a2 ⇒ o = a1)∧ (a1 6 a2 ⇒ o = a2)

Observe that the above formula can only be satisfied if o is set to the value of the
larger of i1 or i2.
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3.5 Implementation and Evaluation

We implemented our algorithm in a modular tool we call Bigλ. Compo-
nents in Bigλ are represented as annotated functions in a separate extensible
library. These annotations provide typing information and a logical en-
coding of each component. Producers generate an infinite list of programs
in increasing weight order, for each type in the map M, while consumers
lazily combine these programs with the appropriate HOSs. Each producer
and consumer runs in a separate process, with one producer process per
key of M and one consumer process per HOS. Candidate solutions are
checked for determinism by a separate CSG checker, which invokes the
Z3 SMT solver (de Moura and Bjørner, 2008). Synthesized programs are
converted into Apache Spark code and are ready to be executed on an
appropriate platform.

Optimal execution We ensure that Bigλ always generates an optimal pro-
gram with respect to the weight functionω. Producers generate infinitely
many programs in increasing weight order; by exploiting additivity of our
weight function, consumers can efficiently explore the Cartesian products
of these infinite lists in increasing weight order. If a consumer produces a
solution p, we are guaranteed that p is an optimal solution (with respect
to that consumer). In practice, we have multiple consumers; when the
first consumer reports a solution p of weight w, we continue executing all
other consumers until they produce a solution p ′ of weight w ′ < w or a
candidate solution p ′ of weight w ′ > w.

To prevent producers from getting lost down expansions of irrelevant
types, we start with uniform weights and automatically inject a bias to-
wards components over types present in the given examples.

Type checking Bigλ employs incremental type inference, where sets of
typing constraints are maintained with each program. Since producers do
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Component name Description
general

pair : α→ β→ (α,β) create pair
cons : α→ mset[α]→ mset[α] add element to a multiset
emit : α→ mset[α] create singleton multiset

arithmetic
one : int integer constant 1
add : int→ int→ int integer addition
eq? : int→ int→ Bool check two ints for equality
mult : int→ int→ int integer multiplication
max : int→ int→ int return maximal integer
factors : int→ mset[int] return list of factors of int
div : int→ int→ float integer division to float
round : float→ int round float to int

string
pattern : string→ Bool string selector (e.g. regex)
chars : string→ mset[string] convert to list of chars
split : string→ mset[string] split text by whitespace
lower : string→ string convert to lowercase
len : string→ int get length of string
order : string→ string orders the chars of a string

data-based
hashtag : string→ Bool regex selecting hashtags
canonical : (α,α)→ Bool checks if left 6 right
get_tag : Json→ string→ Json get value of tag in json file
find_tags : Json→ mset[string] get top-level tags in json file
gen_perms : mset[α]→ mset[(α,α)] convert multiset into all pairs

Table 3.2: A sample of components used by Bigλ

not communicate during synthesis, different wildcards with the same type
variables might specialize to different variable-free monotypes. In order
to resolve these inconsistencies, producers keep track of constraints over
type variables as they generate programs. The consumers then ensure
that the intersection of the constraints are satisfiable before producing a
candidate solution.
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Set:task Wall CPU ast
|E|

# of WL
time time size cand. time

G
en

er
al

M
ap

Re
du

ce
ta

sk
s

Strings
anagram 2.1 10.7 17 1 911 7
dateextract 0.2 1.2 13 1 78 0.4
grep 0.6 4.2 14 2 593 33.2
histogram 0.1 0.5 12 2 34 0.8
postagging 0.2 1.0 16 2 154 3.1
letteranalysis 4.4 25.1 16 2 6978 7
wordcount 0.2 1.0 15 1 146 2.1

Numerical
factors 0.4 2.8 15 2 623 35.0
max 0.4 2.2 9 3 551 0.8
min 0.4 2.1 10 3 392 0.8
roundedsum 0.6 4.1 11 2 1047 2.2
squaredsum 0.8 5.0 10 2 1728 2.9
sum 0.1 0.6 9 2 72 0.3
sumoffactors 0.1 0.6 10 2 64 0.3
sumrounded 2.9 14.0 13 2 8734 36.8
sumsquared .3 15.3 13 3 10822 58.6

Databases
union 0.1 0.5 10 1 30 1.3
selection 0.3 2.2 17 1 476 7
join 1.3 7.6 18 1 380 7

D
at

a
an

al
ys

is
ta

sk
s

Cycling
bpm 4.3 22.0 14 1 1287 7
watts 4.1 21.9 14 1 1327 7
speed 2.0 12.4 13 1 2323 37.1

Twitter
hashtags 0.9 6.7 16 1 1361 50.1
co-occurrence 0.4 2.7 17 1 419 7

Wikipedia
pageviews (log) 0.3 2.0 13 1 242 2.1
bytes (log) 0.3 2.1 13 1 253 2.2
filtered (dump) 12.8 53.6 20 1 22423 7

Shakespeare
characters 3.5 12.0 19 1 1319 7
sentiment 4.9 15.0 19 1 1450 7

Yelp
city 0.2 1.3 13 1 171 2.01
state 0.2 1.2 13 1 157 1.99
kids 0.1 0.5 13 1 34 0.24

Enron
to 0.2 1.0 15 1 120 0.44
from 0.6 4.6 15 1 995 4.02

Table 3.3: Bigλ synthesis task results

Synthesis Tasks

In order to test the effectiveness of Bigλ, we curated a set of synthesis
tasks with data-analysis problems and general MapReduce programs (see
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Table 3.3).

Data-analysis tasks We have collected a number of datasets, with un-
structured and semi-structured data, on which we applied our approach
to synthesize MapReduce programs that compute useful information.

Our datasets include a large set of tweets from Twitter that we collected
via its streaming API (Twitter). We have synthesized programs that ex-
tract hashtags and compute their occurrence as well as their co-occurrence
frequencies (which are often used in topic modeling (Blei et al., 2003)).

We also acquired a cycling dataset generated by a bike computer. The
owner of this data (a cyclist and computer scientist) has used Apache Spark
to perform a series of complex analyses (blo). We have used this dataset to
synthesize programs that generate a number of histograms of interest to
cyclists, e.g., amount of time spent in a speed range and maximum power
output in ten-minute intervals.

Our datasets also include Shakespeare’s full works, where, for example,
we synthesized a program that detects and counts the number of lines said
by each character in Shakespeare’s plays. We also synthesized programs
that analyzed Yelp reviews (Yelp), English Wikipedia dumps and log files
(Wikipedia), and Enron emails (Cohen).

General MapReduce tasks These tasks represent the most common
MapReduce tasks seen in tutorials and demonstrations, as well as tasks
that can be parallelized in the MapReduce paradigm. In addition, we in-
clude (relational algebra) database operations—join, union, etc.—that are
often compiled to MapReduce for application to large databases (Leskovec
et al., 2014).

Components and sketches Each synthesis task uses a set of core compo-
nents for common base types (such as integers, strings, pairs, lists) along
with several higher-order components representing maps and filters. Each
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task also has more domain-specific components for the input data. For
example, when dealing with our Twitter dataset, we add components to
handle the metadata and manipulate hashtags. Table 3.2 lists and describes
a sample of the components appearing in our synthesis tasks.

For all tasks, we fix a set of eight HOSs with various compositions of
the data-parallel operations in Table 3.1 and an average of 2-3 wildcards
per sketch. These compositions are commonly used in Spark programs
and represent most common MapReduce-like patterns (Miner and Shook,
2012).

Evaluation

We designed our experiments to investigate the following questions:

RQ1 How fast is the synthesis process?

RQ2 How many examples do we need for synthesis?

RQ3 Are the synthesized programs scalable?

To address these questions, we perform two sets of experiments. The
first set involves synthesis of our collected tasks, which we conducted
on a Linux machine with a 4-core Intel i7-4790k processor and 16GBs of
memory. The second set of experiments takes the solution of synthesized
tasks (in the form of executable Apache Spark code) and tests parallel
scalability by applying them to gigabytes of data on Google Cloud clusters
with n1-standard-8 nodes (Cloud).

Table 3.3 describes the synthesis tasks we collected and results of
applying Bigλ on these tasks. All tasks were successfully synthesized
under a time limit of 90 seconds and a memory limit of 8GBs. For each task,
the table shows (i) the amount of wall and CPU time (aggregate time over
all cores) taken by Bigλ; (ii) the size of the synthesized programs (measured
by ast nodes); (iii) the number of examples needed for generating a desired
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solution; (iv) the number of candidate solutions examined for each task
(applications of Verify (·)); and (v) the amount of time taken by a worklist
algorithm.

RQ1: Efficiency The results show that Bigλ can synthesize all tasks in a
few seconds at most, with only a single benchmark exceeding 5 seconds.
To demonstrate the difficulty of these benchmarks, we show runtime re-
sults for a (sequential) type-directed, top-down synthesis algorithm that
maintains a single worklist that initially contains all HOSs. The algorithm,
which we call WL, uses the worklist to explore all well-typed comple-
tions of the HOSs. This is analogous to a technique of Feser et al. (2015),
but without the deduce step, which is inapplicable in our generic setting.
The results show that Bigλ outperforms WL, which exceeds time limit in
many instances. WL keeps a single worklist with a HOS h and partial
completions for each  ∈ wild (h) as elements. Due to this, if h has two
wildcards with n completions each, WL might require n2 elements in the
worklist. Bigλ breaks up h into two producers, one for each wildcard, both
of which maintain a separate worklist of at most size n. By breaking h
into subproblems, Bigλ turns a multiplicative cost into an additive one and
saves on space and time.

RQ2: Usability Our results indicate that Bigλ can synthesize desired
programs with a very small set of examples, despite the complex nature
of the programs we synthesize (with solutions consisting of anywhere
between 9 and 20 AST nodes). For example, Bigλ correctly synthesizes the
following program, which computes hashtag co-occurrence patterns in
tweets with only a single example multiset:

let hashtag_pairs = map m ◦ reduceByKey r
where

m s = map
(λp. (p, 1))
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(filter canonical (gen_perms (match "#[\w]" s)))
r x y = x + y

Throughout our benchmarks, each example is relatively small, consist-
ing of an input multiset of between 3 and 8 elements and an output value
of approximately the same size. We checked correctness of synthesized
programs manually against our own solutions (which we constructed in
the process of collecting the tasks). We attribute the fact that a small num-
ber of examples is needed to (i) the restricted structure programs can take,
as imposed by HOSs, and (ii) the optimality criterion that favors smaller
programs.

RQ3: Scalability Our evaluation shows that restricting search to higher-
order sketches resembling common data-parallel programming patterns
indeed results in scalable implementations. For most tasks, synthesized
programs closely resembled our own solutions. Figure 3.5 shows the
time it took for three of our synthesized analyses to run on Twitter data,
Wikipedia log files, and Wikipedia page dumps, respectively. The plots
show the decreasing running time as we increase the number of available
compute nodes, from 2 to 10, in our Google cloud cluster. All data sets are
on the order of ∼20GBs. We see an expected log-like increase in speedup
as we increase the number of nodes (reducers need to apply a binary
function log n times on n items), indicating that our synthesized solutions
are indeed data-parallel, and thus fit naturally on distributed architectures.

Summary In summary, our implementation and evaluation indicate
our technique’s ability to efficiently synthesize non-trivial data-parallel
programs. Our evaluation also shows that, despite the rich language
we have and the size of the data we wish to analyze, a small number of
examples suffices for synthesizing powerful programs that can execute
and scale on cloud infrastructure.
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Figure 3.5: Scalability experimental results for Bigλ

3.6 Related Work

Functional program synthesis A number of works have addressed syn-
thesis of functional programs (Summers, 1976; Albarghouthi et al., 2013;
Feser et al., 2015; Osera and Zdancewic, 2015; Kneuss et al., 2013; Kun-
cak et al., 2010; Gvero et al., 2013; Kitzelmann and Schmid, 2006). The
works of Feser et al. (2015), Osera and Zdancewic (2015), and Frankle
et al. (2016), like our work, utilize both examples and types to search the
space of programs. The works of Kneuss et al. (2013), Kuncak et al. (2010),
and Polikarpova et al. (2016) synthesize functional programs from logical
specifications or refinement types. Gvero et al. (2013) synthesize code
snippets from types by enumerating all terms inhabiting a type (simi-
lar to what producers do in our algorithm). In comparison with these
works, our work addresses the question of synthesizing functional pro-
grams that (i) utilize data-parallel operations and (ii) are robust to network
non-determinism and reducer parallelization. Our work also introduces
higher-order sketches to direct synthesis towards efficient, parallel imple-
mentations. Algorithmically, our work is inspired by the approaches of
Escher (Albarghouthi et al., 2013), Myth (Osera and Zdancewic, 2015),
and λ2 (Feser et al., 2015).
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Data transformation synthesis Gulwani’s FlashFill (Gulwani, 2011) ini-
tiated a promising line of work on program synthesis for data manipulation
by end users, particularly for spreadsheets. The work has been extended
to string and number transformations (Singh and Gulwani, 2012b,a), table
transformations (Harris and Gulwani, 2011), and data extraction from
spreadsheets (Barowy et al., 2015; Le and Gulwani, 2014). The techniques
have also been cast into a generic synthesis framework (Polozov and Gul-
wani, 2015).

The aforementioned works are primarily targeted at data extraction
and transformation. Our work differs in two ways: (i) our primary goal
is to synthesize programs that can run on large clusters; (ii) our work is
also suited for data aggregation tasks—e.g., counting, compressing, build-
ing histograms—and not only data transformation tasks. We believe that
combining our program synthesis technique with domain-specific data
transformation synthesis, data wrangling (Kandel et al., 2011), and query
synthesis (Tran et al., 2009; Zhang and Sun, 2013) is a promising direction
towards enabling end-user data analysis.

Synthesis of parallel programs Numerous works have addressed the
problem of synthesizing parallel programs—for high-performance appli-
cations (Xu et al., 2014), automatic vectorization (Barthe et al., 2013), and
graph algorithms (Prountzos et al., 2012, 2015). Our work is fairly different
both in application and technique: we synthesize data-parallel programs
for MapReduce-like systems using input–output examples, as opposed to
reference implementations or high-level specifications.

Data-parallel programming and compilation A range of communities
have studied data-parallel programming. We address the most related
works. Radoi et al. (2014) studied the problem of compiling sequential
loops into MapReduce programs by translating Java loops into a λ-calculus
with fold and using rewrite rules to create mappers. Our domain here
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is different: synthesis from examples. However, our approach opens the
door to blackbox parallelization, in which a sequential program is queried
for input–output examples and a synthesis engine proposes candidate
data-parallel programs.

Raychev et al. (2015) recently proposed parallelizing sequential user-
defined aggregations (over lists) by symbolically executing aggregations on
chunks of the input list in parallel. This development is interesting from
our perspective as we might be able to (if needed) synthesize sequential
reducers that can be run in parallel. Yu et al. also looked at the problem of
parallelizing aggregations by detecting that an aggregation is associatively
decomposable (Yu et al., 2009).

Hyperproperty verification Hyperproperty-verification techniques in-
clude self-composition (Barthe et al., 2004), product programs (Barthe et al.,
2011, 2014; Zaks and Pnueli, 2008) and relational Hoare logic (Benton, 2004;
Carbin et al., 2012). Our CSG verification can be seen as a self-composition
encoding of programs into SMT formulas. Recently, Chen et al. (2015)
studied decidability of the problem of verifying determinism of Hadoop-
style reducers (over lists), and proposed a reduction to sequential assertion
checking. Our problem is different in that our setting is functional, and
we need to only consider binary reduce functions to prove determinism.
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4 privacy-aware synthesis

We have seen multiple techniques proposed to tackle a variety of program
synthesis problems in the space of data analysis (Gulwani et al., 2012;
Yaghmazadeh et al., 2017; Wang et al., 2017a; Zhang and Sun, 2013; Smith
and Albarghouthi, 2016; Feng et al., 2017) An implicit assumption in these
works is that the data is fully accessible to the user. However, today privacy
is paramount, and not only have a number of systems have been proposed
by the research community for enforcing differential privacy (McSherry,
2009; Roy et al., 2010; Johnson et al., 2018b; Proserpio et al., 2014), major
corporations (Erlingsson et al., 2014; Apple, accessed 11-11-2017; Johnson
et al., 2018b) and governments (Bureau, accessed 11-11-2017; Haney et al.,
2017) have started incorporating differential privacy to protect sensitive
personal information in their data analysis.

Our next goal is to aid users in constructing programs to execute on
dp-enforcing systems. Given a user-provided specification of a program,
we seek to synthesize an approximate differentially private program that
while ensuring that it has a low privacy cost. Reasoning about a program’s
privacy cost is a complex process, akin to reasoning about a program’s
runtime complexity. The linear dependent type system DFuzz (Gaboardi
et al., 2013) allows us to reason about the sensitivity of a randomized
program—which is treated as a resource—and hence its privacy cost.

Unfortunately, type-directed synthesis procedures are inversions of
top-down type-checking algorithms, and the only known type-checking
algorithm for DFuzz de Amorim et al. (2014) works bottom-up. To enable
synthesis in this setting, we will need to (i) introduce a language of sym-
bolic context constraints, which succinctly characterize the infinitely-many
possible typing contexts of an incomplete program, and (ii) develop a
constraint abduction technique that answers when linear dependent sub-
typing holds. Our solutions to these challenges, amongst others, allow
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Figure 4.1: Overview of privacy-aware synthesis technique and setting

us to construct a powerful synthesis algorithm, which we call sensitivity-
directed synthesis. The contents of this chapter are based on the work of
Smith and Albarghouthi (2019b).

4.1 Illustrating Privacy-Aware Synthesis

In this section, we discuss two examples of programs that our approach
can synthesize, and use them to illustrate the DFuzz type system as it
relates to differential privacy.

Example 1: Aggregation Query

Suppose we would like to calculate the number of patients diagnosed
with cancer in a hospital without sacrificing the privacy of individual
patients. Differential privacy stipulates that a certain amount of random
noise needs to be added to the computation. For example, the randomized
function f computes the total number of patients diagnosed with cancer
(stored in c), assuming the database m is a multiset of pairs of "Patient ID"
and "Diagnosis". f returns a noisy version of the true count c by sampling
from a Laplace distribution with mean c and scale 1/ε:

let f m = Laplace c
where c = count p
where p = filter (fun (k, v) -> v = "Cancer") m
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Figure 4.2: Applying the function f to adjacent databasesm1 andm2

The type of f is mset [row] [∞] (ε ©R: it takes a multiset of rows of
unbounded size, denoted by the indexed type mset [row] [∞], and returns a
sample from a distribution over real numbers, denoted by the probability
monad©R. The ε denotes the sensitivity of the function (Definition 2.4).
In our case, adding or deleting one row from the input multiset changes
the output probability distribution by a multiplicative factor of ε. Formally,
the metric used over probability distributions by the type system implies
ε-differential privacy: for any two multisets, m1 and m2 differing by an
element (so dD(m1,m2) 6 1) and for any subset S ⊆ R, we have

Pr [f(m1) ∈ S] 6 eε · Pr [f(m2) ∈ S]

As a visual illustration, consider m1 and m2 in Figure 4.2. The two
multisets differ by a single element, patient D. The differential privacy
guarantee ensures that a physician applying f before and after the new
patient D is added should not be able to tell whether patient D has cancer,
since the two distributions are close to each other, and the physician only
observes a single sample. By applying repeated queries, the physician
can infer the actual value of the query with high confidence, but the
system executing queries on the dataset will enforce a fixed privacy budget,
protecting from such statistical-inference attacks.
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Synthesis Technique To synthesize the function f above, the user needs
to supply (i) a set of input–output examples describing f and (ii) an upper
bound on the sensitivity of the function, e.g., ε. Note that since f is ran-
domized, the input–output examples will refer to the de-noised version
of the function; i.e., when checking whether f satisfies the examples, our
algorithm evaluates f on the examples and replaces privacy mechanisms
like Laplace c with the function that deterministically returns c (the mean).
For instance, the user may provide a toy dataset likem2 in Figure 4.2 as
an input example with the corresponding output 2.

Our synthesis algorithm operates in a top-down fashion, refining an
incomplete program until it is complete, satisfies the input-output exam-
ples, and is within the given sensitivity upper bound. For an illustration,
consider the following incomplete function:

let f m = Laplace (sum  )

The function sum computes the sum of elements in a multiset of real num-
bers, so it has type mset [R] [∞](∞ R. Notice that sum is infinitely sensitive:
adding a number to the input multiset may result in an arbitrary change
to the total sum. Our algorithm realizes that it is impossible to complete
f and still result in an ε-dp function, as adding any amount of noise to
the result of an ∞-sensitive deterministic computation corresponds to
an∞-dp function—i.e., no privacy is guaranteed. Therefore, the whole
search space rooted at the incomplete program f is pruned. The same
would hold if we were to replace sum with a 2-sensitive function of type
mset [R] [∞] (2 R: our synthesis algorithm would determine that any
completion would result in, at best, a 2ε-dp function.

This sensitivity-directed pruning of the search space is guided by a set
of type constraints over symbolic sensitivity variables that are maintained
along with incomplete programs. We show that these type constraints can
be translated to the theory of real closed fields and checked for satisfiability
using SMT solvers. When those constraints are unsatisfiable, we know
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that no completion is possible for an incomplete program.

Types of Higher-Order Functions To give a better a taste of the type
system, consider the type of map over multisets:

map : ∀α,β.∀s. (α→ β)(2·s mset [α] [s](1 mset [β] [s]

Semantically, map takes a function g and a multisetm (with up to s elements)
and applies g to every element of m to get a new dataset with the same
size upper bound. The type signature of map encodes its privacy semantics.
If the function g is modified in any way, the resulting multiset is different
by at most 2s elements, as denoted by the sensitivity of the first argument.
Similarly, if the input multiset is modified by adding or deleting one
element, this results in a multiset that is different by at most 1 element, as
denoted by the sensitivity of the second argument.

Example 2: Iterative Privacy Mechanism

The differential privacy literature has a number of privacy-preserving
variants of popular algorithms. We will see, for instance, how to synthesize
a differentially private version of the k-means clustering algorithm, which
has the following type:

∀i,k. N[i]︸︷︷︸
# iterations

(∞ L(〈R,R〉)[k]︸ ︷︷ ︸
initial clusters

(∞ mset [〈R,R〉] [∞]︸ ︷︷ ︸
dataset

(3·i·ε ©L(〈R,R〉)[k]︸ ︷︷ ︸
final clusters

The goal of k-means is to map a multiset of points to k clusters. It takes the
number of iterations of the k-means update procedure (k-step) to execute,
a list of initial clusters, and a multiset of points (in R2). Observe that the
privacy (sensitivity) of k-means is a function of the number of iterations of
a single step: 3 · i · ε. Given a small example input dataset and expected
output, our algorithm is able to synthesize a recursive implementation
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let k-means iter centers data = match iter with
| 0 -> return centers
| n + 1 ->

let-draw centers = k-means n centers data in
k-step centers data

Figure 4.3: Implementation sketch for k-means, adapted from Gaboardi
et al. (2013)

let idc iter data queries = match iter with
| 0 -> return init_approx
| n + 1 ->

let-draw approx = idc n data queries in
let-draw query = q-select queries approx data in
let-draw actual = Laplace (eval-q query data) in
return (dua approx query actual)

Figure 4.4: Implementation sketch for idc, adapted from Gaboardi et al.
(2013).

of differentially private k-means, similar to the one presented by Gaboardi
et al. (2013).

An implementation of k-means is given in Figure 4.3, and an implemen-
tation of the iterative database construction algorithm by Gupta et al. (2012),
which iteratively learns a synthetic database (using dua, a database update
mechanism such as multiplicative weights (Hardt et al., 2012)) to accu-
rately answer a set of queries, is given in Figure 4.4. Our algorithm is also
able to synthesize idc when provided with a small set of examples.

4.2 The Synthesis Problem

Before defining the synthesis problem, we present a simplified view of
the linear dependent type system DFuzz . Refer to Gaboardi et al. (2013)
for a full description.
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Differences from DFuzz The system described below is a variant of
DFuzz containing minor changes. The changes are not substantial enough
to qualify the variant as a distinct system, so we will continue to refer to
our type system as DFuzz and simply highlight the changes here.

To support compositions of higher-order operators (such as map from
Section 5.1), we enable type polymorphism by augmenting DFuzz with
type quantifiers (similar to de Amorim et al. (2014)).

Databases in DFuzz are elements of a type with no size information.
We treat databases as elements of the type mset [τ] [S], which are multisets
containing at most S elements of type τ. Including multisets smaller than
S in the type allows us to compute the distance between multisets whose
dependent indices are not equal by using the resulting subtyping relation
(discussed below) to coerce their types into agreeing. Refer to Appendix B.1
for details of this modification.

Overview DFuzz uses a modal operator !k from linear logic to keep track
of the sensitivity of a value. A function of type !kσ ( τ is k-sensitive
in its first argument, and a typing context containing the assumption x :

!kτ indicates the typing context can type expressions that are at most k-
sensitive in x. We will simplify the syntax of these statements, and instead
write them as σ (k τ and x :k τ. Furthermore, we use the traditional
arrow σ→ τ for∞-sensitive functions (i.e., σ(∞ τ).

Syntax DFuzz types, context, and expressions are constructed from the
grammar in Figure 4.5, which we elaborate below:

1. Sensitivity and size: Sensitivity and size expressions (R and S) consist of
variables (k and i), constants (0, c, and∞), and simple arithmetic. These
expressions are used in (i) modal types and (ii) as constraints on our precise
types.
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2. Precise types: Precise types are types dependent on sensitivity and size
expressions. R[R] and N[S] are the reals and naturals whose value is pre-
cisely R or S; mset [τ] [S] are multisets with at most S elements of type τ,
and L(τ)[S] are lists with precisely S elements of type τ.

3. Probability monad: Types of probabilistic values of type τ are written
using a monadic type©τ. Values can be lifted to probabilistic values using
return e, and sampled from probabilistic values using let-draw x =

e1 in e2 (where x is drawn from distribution e1 and used in e2).

4. Dependent pattern-matching: Precise types N[S] and L(τ)[S] are elimi-
nated using dependent pattern-matching expressions, which use informa-
tion about the constructors of the precise types to constrain the value of the
size term. For example, if we match a precise natural with the constructor
0, we know S = 0.

5. Quantifiers: Quantifiers (∀) bind size, sensitivity, and type variables. We
restrict type quantifiers to be predicative, but let size and sensitivity quan-
tifiers appear anywhere. We use free(τ) to denote free variables in τ.

6. Contexts and constraints: A typing context Γ maps variables to modal
types. Our typing judgements will depend on constraintsΦ on sensitivity
variables. For instance, Φmay specify that k 6 5, where k is a sensitivity
variable. We use Sat (Φ) to denote that a constraint Φ is satisfiable. A
constraintΦ is a conjunction of inequalities over integers and reals, with
(i) non-linear arithmetic and (ii)∞, following the semantics of de Amorim
et al. (2017); multiplying by ∞ is non-commutative, so r ·∞ = ∞ but∞ · r = 0 when r = 0 and∞ · r =∞ for r > 0.

7. Expressions: We have a simple expression language over variables x and
components c from a provided set C—the CFG defining e induces a signa-
ture, which we’ll call ΣC (Definition 2.8). We also allow for term-, type-,
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and sensitivity-abstractions and applications as in System F, and recursion
using fix x. e.

Typing and Context Arithmetic DFuzz provides a typing judgement
of the form Φ, Γ ` e : τ, specifying that e is of type τ under context Γ
and assuming constraintΦ holds. We highlight the crucial typing rule—
function application—and leave the rest to Gaboardi et al. (2013).

Φ, Γ ` f : σ(R τ Φ,∆ ` e : σ
((-Elim.)

Φ, Γ + R · ∆ ` f e : τ
Observe the typing context arithmetic in the consequent; DFuzz de-

fines context scaling and addition as a generalization of context union. This
arithmetic encodes the fact that sensitivities multiply through function
composition in the type system. Formally:

Definition 4.1 (Context Arithmetic). Let Γ and ∆ be typing contexts where,
for all variables x, if (x :T σ) ∈ Γ and (x :T ′ τ) ∈ ∆, then σ = τ. For sensitivity
expressions R, we define:

Γ + R · ∆ = {x :T+R·T ′ σ | (x :T σ) ∈ Γ , (x :T ′ σ) ∈ ∆}
∪ {x :T σ | (x :T σ) ∈ Γ , x /∈ dom(∆)}

∪ {x :R·T ′ σ | (x :T ′ σ) ∈ ∆, x /∈ dom(Γ)}

Example 4.2. Let f be the function λx : R. 2 ·x and assume some context Γ gives
us the judgement >, Γ ` f : R (2 R. To apply f to a variable y : R, we can
apply ((-Elim.) to the natural judgement

>, {y :1 R} ` y : R

producing the consequent

>, Γ + 2 · {y :1 R} ` f y : R
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Sensitivity and size expressions
k is a sensitivity variable, i is a size variable, and t is a type variable

R := k | c ∈ R>0 | S | R+ R | R · R |∞ (sensitivity expression)
S := i | 0 | S+ 1 |∞ (size expression)

Linear dependent types

τ := a | Z | α | A( τ | 〈τ, τ〉 |©τ (types)
A := !Rτ (modal types)
α := R | bool | . . . (base types)
Z := R[R] | N[S] | L(τ)[S] | mset [τ] [S] (precise types)
a := ∀n. τ (quantifiers)
n := k | i | t (kinds of variables)

Constraints and typing context

Φ := > |Φ∧Φ | S = S | R 6 R (constraints)
Γ := ∅ | Γ , x : A (typing context)

Programs

e := x | c ∈ C (expressions)
| e e (application)
| λx. e | fix x. e (abstraction and fixpoints)
| return e | let-draw x = e in e (return and bind for©)

| matchN e with 0→ e | x→ e (pattern-matching )

| matchL e with nil→ e | cons (x,y)→ e (pattern-matching)
| e[R] | e[τ] (sens./size and type app.)
| Λk. e | Λi. e | Λt. e (sens., size, and type abs.)

Figure 4.5: Grammars of DFuzz types and programs
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By Definition 4.1, Γ + 2 · {y :1 R} = Γ ∪ {y :2 R}, assuming y is not bound in Γ .

Subtyping DFuzz defines a notion of subtyping using the judgement
Φ; Γ |= σ v τ, where the constraint Φ determines whether the relations
between sensitivity variables are appropriate to subtype in context Γ . This
judgement is defined by a set of inference rules, two of which we present
here. The rule

Φ |= r ′ 6 r Φ; Γ |= σ v σ ′
(v .!r)

Φ; Γ |= !rσ v !r ′σ ′

states that we can replace usage of an r ′-sensitive σ ′ with an r-sensitive
σ, as long as we do not decrease the sensitivity (or r ′ 6 r). As subtyping
functions is standard (contravariant in the domain and covariant in the
codomain), with v-reflexivity we can encode the fact that a c-sensitive
function is also c ′-sensitive when c 6 c ′ in the subtyping system with the
valid judgement:

R 6 T |= σ(R τ v σ(T τ

To subtype databases with size terms, we use the rule

Φ |= S 6 T Ψ; Γ |= σ v τ
(v .mset)

Φ∧ Ψ; Γ |= mset [σ] [S] v mset [τ] [T ]

which allows us to weaken the type of a database by increasing the size
bound. In Appendix B.1, we show how this rule integrates with DFuzz’s
metric preservation claims.

Formalizing the Synthesis Task

A privacy-aware synthesis task S is given as a tuple S = (σ,C,φk,φs),
where

1. σ is a goal type with free(σ) = {k}.
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2. C is a set of components. We assume all functions f ∈ C are provided with
an interpretation in the canonical algebra and a deterministic alternative
interpretation (Definition 4.3).

3. φk is a first-order formula encoding a budget specification constraining a
sensitivity variable k.

4. φs is a functional specification encoding the desired semantics of the solu-
tion.

A program p satisfies S if the sensitivity of p satisfies φk—i.e., φk :=

k 6 1 imposes an upper bound on sensitivity. Additionally, p should be
well-formed, well-typed, and should satisfy the functional specification
φs. If p uses components that compute probabilistic values, we cannot
check satisfaction of the functional specification φs. Instead, we require
that the canonical deterministic alternative interpretation of p—denoted
JpKd—satisfies φs.

We assume that every probabilistic component c ∈ C—in addition to
being equipped with an interpretation JcK in the canonical algebra—is
equipped with a deterministic alternative interpretation JcKd with the
following properties: (i) JcKd returns a probability distribution with sup-
port on a single value, and (ii) JcK and JcKd have the same domain and
codomain in the canonical carrier set. Semantically, deterministic alterna-
tive interpretations should return the most likely output of their probabilistic
counterparts. For example, the function Laplace, which samples from the
Laplace distribution, has the alternative interpretation JLaplaceKd (c) that
simply returns the mean c. Further examples are given in Table 4.1.

Using deterministic alternative interpretations, we can define a notion
of deterministic satisfaction:

Definition 4.3. Let p be a probabilistic program with components from C, and
let pd be the map defined as follows: for all i,o in the canonical carrier set, p(i) =
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Deterministic Alternative (w/description)

JBernKd = λp. return (p > 1/2)
returns true if p > 1/2, false otherwise

JLaplaceKd = λx. return x
returns the mean x

q
ExpMechSd

y
= λu. λd. argmaxs∈Su(d, s)

returns the s ∈ S maximizing u on database d

Table 4.1: Deterministic alternatives to probabilistic functions

o if and only if o has non-zero support in the distribution JpKd (i). As JpKd has
support on a single value, pd is a function.

We say p deterministically satisfies the functional specificationφs (written
p |=d φs) if pd |= φs.

Deterministic satisfaction does not ensure all executions of a proba-
bilistic program p satisfy φs. Rather, as DFuzz models probabilistic states
by distributions with finite support, we are simply ensuring that the ex-
ecutions where p |= φs classically have non-zero support. If we further
assume that all probabilistic components operate independently (which
may not always be the case, due to control-flow effects), we get a slightly
stronger property: the most likely execution of p satisfies φs.

We will construct a correctness constraint (Definition 2.17) from S:

Definition 4.4. Let S = (σ,C,φk,φs) be a privacy-aware synthesis task, and
let φS be the induced correctness constraint. A program p ∈ TΣC is a solution to
φS, denoted p |= φS, if and only if:

1. p |=d φs, and

2. there is a model M inducing the interpretation J·KM over contexts, expressions,
and types that replaces free sensitivity variables with constants such that

M |= φk and JΓCKM ` JpKM : JσK
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where ΓC is the typing context {c :∞ τ | c : τ ∈ C}.
The following example gives a concrete synthesis task and a solution

of the induced correctness constraint:

Example 4.5. Consider the synthesis problem 〈R(k R,C,φk,φs〉, where

φk := 0 < k 6 2 and φs := p(0) = 1 ∧ p(2) = 5

and the components are

C = {square : R(∞ R, double : R(2 R, succ : R(1 R}

A solution is p = λx. succ(double(x)) : R(k R, with witnessing model M
setting k to 2.

4.3 Synthesis with Linear Dependent Types

Our sensitivity-directed synthesis algorithm operates in a top-down fash-
ion, iteratively refining an incomplete program into a complete one that
satisfies the specification and budget constraints. The process is enabled
and guided by two key ideas:

1. Symbolic context constraints (SCC): A SCC succinctly captures all possi-
ble typing contexts that can type a program. This allows us to symbolically
type-check incomplete programs and prune the search space when the
sensitivity budget is insufficient.

2. Constraint abduction: As discussed in Section 5.1, DFuzz’s subtyping
judgement relies on constraints over sensitivity and size variables. During
synthesis, to replace a wildcard of type τwith an expression of type σ v τ,
we must ask “what constraints do we need to ensure subtyping works?” This
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is a logical abduction question. We present a technique to abduce the most
general subtyping constraints.

Our algorithm is defined by a set of inference rules that let us derive
synthesis states from a synthesis state. A synthesis state 〈φ, p〉 is a pair con-
sisting of: (i) a proof obligation φ determining when p is well-typed and
satisfies the privacy budget, and (ii) an incomplete program p containing
annotated wildcards  Ωτ , where τ is a goal type andΩ is a symbolic typing
context (defined shortly).

Invariants Our algorithm maintains the invariant that if, for some syn-
thesis state 〈φ, p〉, the proof obligation φ is unsatisfiable, then for every
synthesis state 〈φ ′, p ′〉 derived from 〈φ, p〉, formula φ ′ is also unsatisfi-
able. This allows us to discontinue inference from unsatisfiable subprob-
lems, as it means they cannot satisfy sensitivity budget constraints.

Inference Rules and Symbolic Constraints

We now detail our algorithm’s inference rules , given in Figures 4.6 and 4.7.
Implementation details are left to Section 4.5.

Initialization and Termination

The rule (Init) initiates the synthesis process: starting with the synthesis
problem 〈σ,C,φk,φs〉, we build the synthesis state

〈
φk ∧Ω = ΓC,  Ωσ

〉
indicating that we want an expression that satisfies the sensitivity re-
quirements of φk and is of type σ. The functional specification φs is
uniform across all synthesis states derivable from the same synthesis prob-
lem, and so we do not explicitly propagate it. ΓC is the typing context
{c :∞ τ | c : τ ∈ C} of all components in the synthesis domain C.

Rule (Finish) encodes the definition of a solution to the synthesis prob-
lem (Definition 4.4): a solution p must be complete and must determin-
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Initialization and termination

〈σ,C,φk,φs〉 Ω fresh
(Init)〈

φk ∧Ω = ΣC,  Ωσ
〉 〈φ, p〉 Sat (φ) p |=d φs p complete Term(p)

(Finish)
p is a solution

Application, abstraction, and variable/function introduction

〈
φ, t

[
 Ωσ
]〉

Ω1,Ω2, r fresh
(App)〈

φ∧Ω = Ω1 + r ·Ω2, t
[
 Ω1
τ(rσ  

Ω2
τ

]〉 〈
φ, t

[
 Ωτ(rσ

]〉
Ω1 is fresh

(Abs)〈
φ∧Ω1 = Ω⊕ {x :r τ} , t

[
λx : τ. Ω1

σ

]〉
〈
φ, t

[
 Ωσ
]〉

σ ≺[t/t′] τ t is fresh
(TApp)〈

φ, t
[
 Ω∀t.τ[t

′]
]〉

〈
φ, t

[
 Ωσ
]〉

γ;ψ ` τ← σ v : τ ∈ Scope(φ,Ω)
(Id)

〈φ∧ γ∧ψ∧Ω = {v :1 τ} , t [v]〉

Figure 4.6: Basic synthesis rules; ≺γ is generalization (Definition 4.9),
Term(·) is a termination oracle, and Scope(φ,Ω) returns the set {xi : τi}
such that, for all modelsM |= φ, for all iwe haveM |= xi : τi ∈ Ω

istically satisfy the functional specification φs. Furthermore, the proof
obligation φ must be satisfiable—our inference rules maintain the invari-
ant that when φ is satisfiable, the expression p is well-typed and obeys
the sensitivity constraint φk. In proving Theorem 4.18 we will formalize
this notion.

Symbolic Context Constraints

The inference rules can be viewed as inversions of the rules defining the
DFuzz typing judgement. Consider the rule (App) applied to

〈
φ, t

[
 Ωσ
]〉

.
(App) is an inversion of the DFuzz rule for(-elimination, from Section 5.1,
which specifies that an expression of type σ can be generated if we have
(for some choice of τ)



69

Recursion and pattern-matching

〈
φ, t

[
 Ωσ
]〉

Ω1,Ω2 fresh
(Fix)〈

φ∧Ω =∞ ·Ω2 ∧Ω1 = Ω2 ⊕ {x :∞ σ} , t
[
fix x. Ω1

σ

]〉
〈
φ, t

[
 Ωσ
]〉

Ω1,Ω2,Ω3,Ω4, r fresh
(Match)N〈

φ ′, t
[
matchN  

Ω1
N[s] with 0→  Ω2

σ[s/0] | x[i] + 1→  Ω3
σ[s/i+1]

]〉
where φ ′ = φ∧ Ω = Ω4 + r ·Ω1 ∧Ω2 = Ω4 [s/0]∧ Ω3 = Ω4 [s/i+ 1]⊕ {x :r N[i]}

〈
φ, t

[
 Ωσ
]〉

Ω1,Ω2,Ω3, r fresh
(Match)L〈

φ ′, t
[
matchL  

Ω1
L(τ)[s] with nil→  Ω2

σ[s/0] | cons (y, x[i])→  Ω3
σ[s/i+1]

]〉
where φ ′ = φ∧ Ω = Ω1 + r · ∆∧Ω2 = Ω1 [s/0]∧ Ω3 = Ω1 [s/i+ 1]⊕ {y :r τ, x :r L(τ)[i]}

Monadic operations

〈
φ, t

[
 Ω©σ

]〉
Ω1 fresh

(Return)〈
φ∧Ω =∞ ·Ω1, t

[
return  Ω1

σ

]〉
〈
φ, t

[
 Ω©σ

]〉
Ω1,Ω2,Ω3 fresh

(LetDraw)〈
φ ′, t

[
let-draw x =  Ω1

©τ in  Ω2
©σ

]〉
where φ ′ = φ∧ Ω = Ω1 +Ω3 ∧ Ω2 = Ω3 ⊕ {x :∞ τ}

Figure 4.7: Advanced synthesis rules extending the procedure in Figure 4.6

1. an expression of type τ(R σ in some contextΩ1, and

2. an expression of type τ in some contextΩ2,

whereΩ = Ω1 + R ·Ω2. In order to invert this rule to construct (App), we
must know how to split Ω; otherwise, we cannot construct the appropriate
wildcards, which track contexts.

Unfortunately, there are infinitely-many choices for contexts Ω1,Ω2,
and sensitivity expression R. To allow us to express such arbitrary context
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splits in a finite manner, we introduce symbolic context constraints (SCC),
which succinctly encode infinitely many contexts symbolically.

Definition 4.6 (Symbolic Context Constraints). A symbolic context is a
term C in the grammar

C := ∅ | {x :R τ} |Ω | C+ R · C | C⊕ C | C[s/R],

where Ω is a context variable, R is a sensitivity term, τ is a type, and s is a
sensitivity variable.

A symbolic context constraint E is a conjunction of equalities of symbolic
contexts, or equivalently, a term in the grammar E := E∧ E | C = C.

The grammar in Definition 4.6 defines symbolic contexts C, which are
expressions containing symbolic context variables Ω and a limited set of
concrete contexts, namely the empty context ∅ and the singleton context
{x :R τ}. Symbolic contexts can be constructed through linear combina-
tions C+ R · C, disjoint unions C⊕ C that require the symbolic contexts
have no variables in common, and sensitivity substitutions C [s/R] which
replace sensitivity variables (s) with arbitrary sensitivity expressions (R).
Symbolic context constraints E are conjunctions of equalities over symbolic
contexts. An interpretation of a SCC Emaps symbolic context variables to
concrete contexts. We formalize the interpretation of these constraints in
Definition 4.15.

SCCs also appear in the inference rule (Abs), which introduces a λ-
abstraction. The rule specifies that we can construct a function of type
σ(r τ in contextΩ, but only if the context in the wildcard  Ω1

τ contains
r uses of x. This is expressed in the constraint Ω1 = Ω ⊕ {x :r σ}, which
not only ensures thatΩ1 has r uses of x, but thatΩ has no uses of x (as x
is out of scope).
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Example 4.7 (SCC). Consider the initial synthesis state

〈
0 < k 6 2,  ∅R(kR

〉
.

After applying (Abs), we derive the synthesis state

〈
0 < k 6 2 ∧Ω = ∅ ⊕ {x :k R} , λx : R. ΩR

〉
indicating that the context Ω must contain k copies of x. Then, after applying
the rule (App), we derive the following synthesis state〈

φ, λx : R. Ω1
R(lR  

Ω2
R

〉
where φ = 0 < k 6 2 ∧Ω = ∅ ⊕ {x :k R} ∧Ω = Ω1 + l ·Ω2, indicating that
if we wish to apply an l-sensitive function (where l is fresh), Ω must contain l
uses of variables in contextΩ2.

Due to our maintained invariant, an unsatisfiable subproblem can be
pruned from the search, as it yields no solutions. The following example
illustrates pruning:

Example 4.8 (Pruning). Let us start from the last synthesis state in Example 4.7.
Suppose we replace the  Ω1

R(lR with the ∞-sensitive function square (which
squares a real number). Using the rule (Id), this results in the subproblem with
the following constraints (where we have replacedΩ1 with ∅):

(0 < k 6 2)∧ (Ω = {x :k R})∧ (Ω = ∅+ l ·Ω1)∧ l >∞
This simplifies to 0 < k 6 2 ∧ {x :k R} = ∞ ·Ω2, which is unsatisfiable: the
context on the right has∞ copies of x, while the left as at most 2 copies.
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Pattern Matching

Pattern-matching over the precise types N[S] and L(τ)[S], introduced using
rules (Match)N and (Match)L, gives a mechanism for concretizing our
understanding of the sensitivity of an expression by refining the value of
S. For instance, if we match expression e of type N[s] with the precise
natural constructor 0, in the 0-branch wildcard we may freely assume that
s = 0. This assumptions is propagated in two ways: (i) by substituting all
instances of s with 0 in the type annotation of the wildcard, and (ii) by
restricting the wildcard context via the constraint Γ1 = Γ [s/0], which
requires that Γ1 is simply Γ with all instances of s replaced by 0.

Recursion

The (Fix) rule introduces fixpoint expressions fix x. e, allowing for the con-
struction of recursive programs. We must allow for unlimited uses of the
recursion variable in e, as constrained by the conjunctΩ1 = Ω2 ⊕ {x :∞ σ}
in the consequent, and for potentially infinitely-many recursive expansions
of e, restricting our context to be infinitely-sensitive with respect to all
variables used in e (as expressed byΩ =∞ ·Ω2).

Recursion can, of course, produce non-terminating programs. We
assume the existence of a termination oracle, Term(p), which returns true
if p terminates for all inputs. In practice, our oracle is a procedure that
soundly identifies terminating recursive expansions using the natural
well-founded order over the types N[S] and L(τ)[S].

Probability Monad

The rules (Return) and (LetDraw) are used to enable synthesis of ran-
domized programs. Both rules have monadic types in their antecedent
synthesis states, and so the type-directed nature of synthesis ensures
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that rules constructing probability distributions are only used when a
probability distribution is required.

The expression return e lifts into the probability monad. As an in-
version, rule (Return) provides a mechanism to construct distributions
with support for a single value. The expression generated is∞-sensitive
with respect to all variables inΩ1 (captured by the constraintΩ =∞ ·Ω1)
because close values do not result in close distributions. That is, return 1 and
return 2 are infinitely far apart in the distribution metric, despite 1 and 2
being only distance 1 away. 1

The rule (LetDraw) introduces the DFuzz mechanism for sampling
from distributions, the let-draw x = e1 in e2 expression. (LetDraw)

enables synthesis to perform additional computations on sampled values
by using x in e2. Note that e2 has unrestricted use of x, encoded in the
constraints by the conjunct Γ2 = Γ3 ⊕ {x :∞ τ}, as once a random value is
sampled no post-computation can give any more information about the
distribution than that one point.

Polymorphism

The rules (TApp), (SenApp), and (SizeApp) are used to enable applying
polymorphic functions in our signature, e.g., map, by abstracting types,
sensitivities, and sizes. We only show (TApp): the others are structurally
identical.

Each of the three rules operates similarly: given a synthesis state with
wildcard  Ωσ , they attempt to replace the goal type σwith a polymorphic
type ∀n. τ. To do so, it is necessary to generalize the goal type σ to introduce
a free variable.

1For a fixed ε, define d©τ(δ1, δ2) to be 1/ε ·maxx∈τ |ln(δ1(x)/δ2(x))|. The metric is
defined precisely to ensure DFuzz ’s metric preservation theorem guarantees privacy.
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Definition 4.9 (Generalization). Let γ be a type-variable substitution. We say
a type τ type-generalizes a type σ using γ if τ = γ(σ) and dom(γ) ⊆ free(τ).
We represent this as σ ≺γ τ.

Sensitivity- and size-generalization are defined symmetrically.

In practice, we explore all possible generalizations, of which there are
linearly-many in the size of σ.

Consider the rule (TApp): it refines a wildcard  Ωσ by finding a type τ
with a free type variable t such that σ ≺[t/t ′] τ. This reduces the search to
finding a refinement for the wildcard  Ω∀t.τ, possibly enabling the intro-
duction of a polymorphic function (such as map) using rule (Id).

Example 4.10. Suppose we have a synthesis state
〈
φ,  Ωmset[row][∞](2R

〉
, and

we wish to apply the 1-sensitive function count : ∀β.∀k. mset [β] [k] (1 R.
Since

mset [row] [∞](2 R ≺[α/row] mset [α] [∞](2 R ≺[s/∞] mset [α] [s](2 R

using rules (TApp) and (SizeApp) we can type-generalize and size-generalize
mset [row] [∞](2 R and generate the synthesis state〈

φ,  Ω∀α.∀s.mset[α][s](2R[row][∞],
〉

where the inner application is type-application and the outer application is size-
application. An application of the rule (Id) results in the subtyping abduction
rules (Section 4.3) generating the judgement

>; 1 6 2 ` ∀β.∀k. mset [β] [k](1 R← ∀α.∀s. mset [α] [s](2 R,

allowing us to replace the wildcard with count.
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v 6∈ t SensFree(t) = ∅
(LVar)

v = t;> `{v} v← t

v 6∈ t SensFree(t) = ∅
(RVar)

v = t;> `{v} t← v

(Refl)
>;> `∅ t← t

(Nat)
>;S = S ′ `∅ N[S]← N[S ′]

γ;ψ `A σ← τ
(List)

γ;ψ∧ S = S ′ `A L(σ)[S]← L(τ)[S ′]

γ;ψ `A σ← τ
(MSet)

γ;ψ∧ S ′ 6 S `A mset [σ] [S]← mset [τ] [S ′]

γ;ψ `A σ← τ
(Modal)

γ;ψ∧ S ′ 6 S `A!Sσ←!S ′τ

γ;ψ `A σ← τ
(Monad)

γ;ψ `A ©σ←©τ

γ;ψ `A σ2 ← σ1 δ;φ `B τ1 ← τ2
(Arrow)

γ∧ δ;ψ∧ φ `A∪B σ1 ( τ1 ← σ2 ( τ2

γ;ψ `A σ [α/ρ]← τ [β/ρ] ρ 6∈ A
(ForAll)

γ;ψ `A ∀α.σ← ∀β. τ

γ;ψ `A σ← τ
(Exit)

γ;ψ ` σ← τ

Figure 4.8: Inference rules defining abduction (the remaining rules are in
Appendix B.5); SensFree(t) is the set of free sensitivity variables in t, and
the relation γ;ψ `A σ← τ is avoiding abduction, where the subscript A is
a set of type variables to be avoided by quantifiers
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Constraint Abduction

The subtyping judgement for DFuzz (of the formΦ, Γ |= σ v τ) depends on
a set of constraintsΦ over sensitivity and size variables. During synthesis,
if we require an expression of type τ, we will always be satisfied to find
an otherwise acceptable expression of type σ v τ.

To appropriately apply rule (Id), we must be able to abduce the con-
straint Φ and the type constraints γ under which σ is a subtype of τ.
Informally, we need to answer the question: “what constraints have to be
true so that we can use σ in place of τ?”

We present a set of inference rules in Figure 4.8—derived by combining
an inversion of DFuzz’s subtyping rules with a unification procedure—
that define an abduction judgement γ;ψ ` σ ← τ stating that, if the
type constraint γ (which is a conjunction of equalities over type variables
and constructors) and the sensitivity constraint ψ hold, then we can use
σ in place of τ during synthesis. More formally, we use the following
interpretation: if M is a model over type and sensitivity variables such
thatM |= γ∧ψ, then > |= JσKM v JτKM.

The definition of our abduction judgement depends in part on an
auxiliary avoiding abduction judgement, written γ;ψ `A σ← τ. A is a set
of type variables that have been constrained by abduction, and appears
in the antecedent in rule (ForAll): to ensure the constraints abduced are
the most general, we cannot universally quantify over type variables that
have already been constrained.

The following theorem guarantees our abduction procedure abduces
the most general constraint, which is necessary to ensure we do not miss
solutions by over-constraining the proof obligation:

Theorem 4.11 (Abduction most-generality). If γ;ψ ` σ ← τ, then for all
constraints δ and φ such that δ;φ ` σ ← τ, the formulas δ ∧ φ ⇒ γ ∧ ψ is
valid.
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The proof of Theorem 4.11 is given in Appendix B.6.
This abduction judgement appears in only one inference rule. Given a

synthesis state
〈
φ, t

[
 Ωσ
]〉

, rule (Id) lets us replace the wildcard Ωσ with
an identifier (either a function or variable in scope) of type τ under the
proof obligation γ∧ψ if γ;ψ ` τ← σ. We also accumulate the obligation
that contextΩ = {v :1 τ}, as the expression we replace the wildcard with—
the identifier v—is surely 1-sensitive with respect to v.

Example 4.12 (Abduction). Consider the last synthesis state in Example 4.7.
Replacing  Ω1

R(lR with the 1-sensitive function succ using (Id) invokes abduc-
tion. Rules (Arrow), (Modal), and (Refl) abduce the constraint ψ = 1 6 l
and the empty unification constraint >, indicating that l should be at least the
sensitivity of succ.

Satisfiability of Proof Obligations

We have discussed the construction of symbolic context constraints, but not
their interpretation. In this section, we present a technique for checking
satisfiability of SCCs.

Applying rule (Finish) to a subproblem 〈φ, p〉 relies on checking satis-
fiability of φ, denoted Sat (φ). By construction, the proof obligation φ is
of the form φd ∧ φc, where φd contains no symbolic context constraints,
and φc is only over symbolic context constraints (following Definition 4.6).

Formula φd lies in the combined theory of (i) non-linear arithmetic
over integers and reals extended with∞ and (ii) equality of uninterpreted
functions. However, φc formulas lie in our context expression language,
for which there is no default first-order theory. We now demonstrate how
to translate a formula φc into an equisatisfiable formula over arithmetic
constraints.

Context Interpretations A modelM is a map from symbolic context vari-
ables to concrete contexts (containing no sensitivity variables) in the DFuzz
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system; consequently,M also maps sensitivity (resp., size) variables to the
reals (resp., naturals). A modelM satisfies a context constraintφc (denoted
M |= φc) if φc is true when evaluated using variable assignments from
M.

Example 4.13 (Models). Consider φc := (Ω = ∅ + 2 · {x :k R}). Let M be a
model mapping Ω to the context {x :2 R} and k to 1. Clearly, M |= φ, since the
right-hand side of the equality reduces to {x :2 R} through context arithmetic.

Two contexts are equal in our interpretation if (i) they contain the same
variables and (ii) every variable has the same sensitivity and type in both
contexts.

Translation To check satisfiability of φc, we will transform it into a for-
mula ψc over sensitivity and size variables. Let Support(φc) denote the
support of φc: the set of expression variables that appear explicitly in φc.
For example, if φ := Ω = ∅ + 2 · {x :k τ}, then Support(φ) = {x}. By def-
inition, φc can only restrict the sensitivities of variables that appear in
Support(φc), and so a translation of φc need only constrain sensitivities
of variables in Support(φc).

We will explicitly state the constraintφc puts on all variables in the sup-
port. For each variable in the support, we compute the symbolic sensitivity
as follows:

Definition 4.14 (Symbolic Sensitivity). Let x ∈ Support(φc), and let C be
a symbolic context term. We define the symbolic sensitivity of x in C under
sensitivity substitution δ—written ∆δx(C)—recursively by:

1. ∆δx(∅) := 〈0,>〉

2. ∆δx(Ω) :=
〈
rΩx ,>

〉
, where rΩx is a fresh sensitivity variable

3. ∆δx({x :R τ}) := 〈δ(R),>〉
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4. ∆δx(C [v/s]) := ∆δ
′
x (C), where δ ′ = δ◦[v/s] and composition is right-associative

5. ∆δx(C1 + R · C2) := 〈S1 + δ(R) · S2,φ1 ∧ φ2〉, where ∆δx(C1) := 〈S1,φ1〉 and
∆δx(C2) := 〈S2,φ2〉

6. ∆δx(C1 ⊕ C2) := 〈S1 + S2,φ1 ∧ φ2 ∧ (S1 = 0 ∨ S2 = 0)〉, where ∆δx(C1) :=

〈S1,φ1〉 and ∆δx(C2) := 〈S2,φ2〉

∆δx(C) is a pair 〈S,φ〉, where S is a sensitivity expression (i.e., an arithmetic
combination of sensitivity variables and constants) and φ is a constraint on sen-
sitivity expressions sufficient to ensure equisatisfiability (see Theorem 4.17).

We can now lift a constraint over symbolic contexts to a constraint over
symbolic sensitivities:

Definition 4.15 (Symbolic Sensitivity Constraint). Let φc =
∧n
i=1C

l,i =

Cr,i be a constraint over symbolic contexts. The associated symbolic sensitivity
constraint—written ∆(φc)—is computed as follows:

∆(φc) :=
∧

x∈Support(φc)

n∧
i=1

Sl,ix = Sr,i
x ∧ φl,ix ∧ φr,i

x ,

where ∆ιx(Cl,i) =
〈
Sl,ix ,φl,ix

〉
, ∆ιx(Cr,i) =

〈
Sr,i
x ,φr,i

x

〉
, and ι is the empty sub-

stitution.

Example 4.16. Consider the symbolic context constraint

φc := Ω⊕ 7 · {x :k τ} = {x :10 τ}

Then we have

∆(φc) := r
Ω
x + 7 · k = 10 ∧ (rΩx = 0 ∨ 7 · k = 0)

This formula is satisfiable, as witnessed by the model assigning rΩx = 10 and
k = 0.
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Importantly, this transformation from symbolic context constraints to
symbolic sensitivity constraints preserves satisfiability. This gives a mecha-
nism for checking Sat (φc) using modern SMT solvers without extensive
modifications. This notion is formalized as follows:

Theorem 4.17. Consider the constraints φd ∧ φc. We have Sat (φd ∧ φc) iff
Sat (φd ∧ ∆(φc)).

Theorem 4.17 is proven in Appendix B.7.

Soundness and Relative Completeness

Our inference rules result in a sound synthesis algorithm, meaning that if
a program p is returned, it is guaranteed to be a solution to the synthesis
problem. Formally:

Theorem 4.18 (Soundness). Let S = 〈σ,C,φk,φs〉 be a synthesis problem,
and let p be an expression returned from a sequence of inference rule applications
beginning with (Init) applied to S and ending with an application of (Finish).
Then p satisfies the correctness constraint φS.

Given a signature Σ, our search’s inference rules generate every pro-
duction in our expression grammar except type-, size-, and sensitivity-
abstractions. Thus, our search is relatively complete: assuming we have an
oracle for satisfiability and termination checking, our search is able to
derive any solution to a synthesis problem that lies in the space of expres-
sions with only term-abstractions and primitives from the provided set of
components C. We have the following formalism:

Theorem 4.19 (Relative completeness). Let S = 〈σ,C,φk,φs〉 be a syn-
thesis problem, and let p be a solution of S with no sensitivity-, size-, or type-
abstractions. Then there is a sequence of inference rule applications beginning
with (Init) applied to S and ending with 〈φ, p〉, with Sat (φ).



81

Functions
map
∀α,β.∀s. (α→ β)(2·s mset [α] [s](1 mset [β] [s]

filter
∀α.∀s. (α→ bool)(s mset [α] [s](1 mset [α] [s]

part
∀α,β.∀s,n. set(α)[n]→ (β→ α)(s mset [β] [s](2 L(〈α, mset [β] [s]〉)[n]

count
∀α.∀k. mset [α] [k](1 R

Privacy Mechanisms (type DB is an alias for mset [row] [∞])
LapMech
∀k. (DB(k R)→ DB(k·ε ©R

ParaMech
∀α.∀n,k.L(α)[n]→ (row→ α)→ (DB(k R)→ DB(k·ε ©L(〈α,R〉)[n]

ExpMech
∀k.D→ (DB(k D→ R)→ DB(k·ε ©D

Table 4.2: Examples of functions in our synthesis domain and privacy
mechanisms; part returns a list of key-value pairs, whose distance metric
is the sum of element-wise distances for lists of the same length, and∞
otherwise

The proof of Theorems 4.18 and 4.19 are provided in Appendices B.2
and B.3.

4.4 Applications of Privacy-Aware Synthesis

In Section 4.3, we described how to solve a synthesis problem 〈σ,C,φk,φs〉.
In this section, we will present two applications of our synthesis algorithm.
First, we focus on synthesizing queries over sensitive databases, before
turning synthesis towards the problem of combining private operators
to construct a differential privacy mechanism from scratch. Finally, we
present an analysis of the security model of using our synthesis algorithm
for sensitive applications.
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Differentially Private Data Analysis

Data analysis tasks are the main application of differential privacy, and
we are interested in using synthesis to aid end-users in interfacing with
sensitive data. Rather than reasoning about the complex interactions
of sensitivities and information leakage, data analysts should be able to
specify a dp query by providing only a semantic specification of the query
and their privacy budget.

We model datasets as multisets of elements of type row, a tuple indexed
by keys. To facilitate the construction of efficient and expressive queries,
we instantiate our set of components C with the following sets:

1. A set of higher-order combinators—map, filter, etc.—similar to the com-
ponents used by Bigλ (Chapter 3).

2. Aggregation operators—sum, max, count, and average—over multisets.

3. Standard arithmetic operations and Boolean predicates.

4. Dataset-dependent constants and projections to extract fields from rows.

Table 4.2 shows four of the combinators in our data-analysis domain.
All are standard, but their type annotations provide a detailed view of
their underlying privacy semantics. A strength of synthesis is that it can
shield users from having to reason about such complex types.

Privacy Mechanisms

To answer queries in a differentially private manner, dataset maintainers
use privacy mechanisms that return sensitive information in provably safe
ways. Privacy mechanisms take in some specification of a query (and
relevant supporting information) and construct a differentially private
function from the dataset to the desired output domain. Data analysts can
expect to be restricted to interacting with sensitive data via a small set of
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mechanisms supported by the dataset maintainer. We therefore focus on
synthesizing inputs to privacy mechanisms.

We will briefly discuss the usage of the privacy mechanisms in Table 4.2.
To simplify the presentation, we assume the componentsC and the privacy
parameter ε are determined a priori by the target dataset. As a further
simplification, we use input-output examples to specify the desired query
semantics: if a user presents a set E of pairs 〈i,o〉, we assume they desire
a program p that agrees on all 〈i,o〉 pairs, i.e. pd(i) = o. Note that,
while input-output examples are a straightforward way to encode desired
semantics, what follows can be adapted for other forms of specifications.

Laplace Mechanism Recall that the Laplace mechanism is applied to
programs with real-valued outputs. When given a set of examples from
databases to real numbers, we can use the Laplace mechanism to reduce
our synthesis problem to a function of type mset [row] [∞](k R.

More precisely, given a set of input-output examples Ewith inputs of
type mset [row] [∞] and outputs of type R,and a sensitivity budget b, we
can construct the privacy-aware synthesis task:

S = 〈mset [row] [∞](k R, C, k 6 b, ∀ 〈i,o〉 ∈ E.p(i) = o〉

Given a program p that is a solution to S, a dataset maintainer can apply
the Laplace mechanism (via application of LapMech) to answer the user’s
query in a privacy-preserving manner.

Parallel Composition Sequential composition of privacy mechanisms
incurs a privacy cost of the sum of the costs of the two mechanisms. This
is often not the best way to guarantee dp. Parallel composition (McSherry,
2009) is a property of dp that allows us to evaluate an ε-dp function on
arbitrarily-many disjoint datasets with a total privacy cost of ε. Following
PINQ (McSherry, 2009), we implement parallel composition by allowing
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users to partition the multiset into disjoint subsets before analyzing each
partition independently.

When given a set of examples E of type mset [row] [∞] × 〈key,R〉—
converting databases to real values indexed by keys—a sensitivity budget
b, a set of keys K, and a projection π : row( K selecting the key for every
row, we build the synthesis problem

S = 〈mset [row] [∞](k R, C, k 6 b, ∀ 〈i,o〉 ∈ E. part(π,K,p, i) = o〉 ,

where the constraint ensures per-partition correctness. A dataset main-
tainer given K and a function p that is a solution to S can construct the
query ParaMech π K p to answer the user’s request while using only ε of
the privacy budget.

Parallel composition is more involved than Laplace mechanism, as
now a user must also provide a set of keys along with their input-output
examples E. This additional information is required to preserve privacy:
ParaMech only evaluates p on partitions constructed by projecting onto a
particular k ∈ K. Restricting evaluation to provided keys ensures the pres-
ence or absence of a key in the dataset is revealed in a privacy-preserving
manner.

Exponential Mechanism We are often interested in performing compu-
tations whose output is some categorical type, e.g., computing the most
common medical condition, yet the mechanisms introduced so far are
restricted to numerical outputs. To handle categorical outputs, we use
the exponential mechanism (McSherry and Talwar, 2007). Instead of adding
noise to the output, the exponential mechanism expects the user to provide
a utility function. This function assigns a real-valued utility (or quality) to
each output d ∈ D given an input. The type of such a utility function is
mset [row] [∞] (k D (∞ R. We leave the details of converting such a
function to an ε-dp query to McSherry and Talwar (2007).
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If a user provides a set of examples E of type mset [row] [∞]×D and a
sensitivity budget b, we can construct the synthesis problem

S =
〈
mset [row] [∞](k D(∞ R, C, k 6 b, φeE,D

〉
,

where the functional specification is

φeE,D := ∀ 〈i,o〉 ∈ E.∀d ∈ D.d 6= o⇒ p(i,o) > p(i,d)

encoding the semantics that o, the desired output, has the highest utility of
all elements in D.

Unlike the previous mechanisms, the synthesis problem encodes a
function whose semantics are not the same as the desired query. The re-
quirement that a user builds a utility function that captures their desired
semantics while still being appropriately sensitive has prevented full adop-
tion of the exponential mechanism in data analysis. Application of our
technique can remove this burden.

Mechanism Design

While data analysts are the primary users of differential privacy, much
research is focused on privacy mechanism design and implementation. Com-
bining privacy primitives to produce new mechanisms is non-trivial: prov-
ing even simple mechanisms such as report-noisy-max require complicated
coupling arguments (Albarghouthi and Hsu, 2018b). Fortunately, the par-
ticular combination of features provided by DFuzz —dependent pattern-
matching, precise types, the probability monad, and recursion—allow
for the typing of full mechanisms such as k-means and idc (Figures 4.3
and 4.4).

The original presentation of DFuzz (Gaboardi et al., 2013) presents
three implementations of iterative privacy mechanisms, each of which
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use an input argument of known size (such as the precise natural iter
with type N[i] in k-means) to bound the number of iterations. By bound-
ing the number of iterations, the applications of privacy primitives also
becomes bounded, which is reflected in the sensitivity of the mechanism,
e.g. k-means is 3iε sensitive in the argument data.

Unlike the applications of synthesis for data analysis, constructing a
synthesis problem whose solution is a privacy mechanism is straightfor-
ward. The following example demonstrates this using k-means.

Example 4.20. Suppose a mechanism designer wants to synthesize a version of
k-means by carefully composing applications of the cluster-updating function

k-step : ∀k.L(〈R,R〉)[k]→ mset [〈R,R〉] [∞](3ε ©L(〈R,R〉)[k]

that, when given a list of cluster centers and a database, updates the list of clus-
ter centers, accumulating a privacy cost of 3ε. Instead of manually reasoning
about the recursion required, the mechanism designer can instead construct the
synthesis problem

S = 〈σ, {k-step} ,>,∀ 〈i,o〉 ∈ E.p(i) = o〉 ,

where σ is the type of k-means given in Section 5.1 and E is a set of input–output
examples. The full version of the implementation sketch given for k-means in
Figure 4.3 is a solution to S.

Utility of Synthesis Solutions

In this section, we frame instantiations of our technique as a mechanism for
finding privacy-aware solutions to a functional specification φs, usually
provided as a set of input-output examples. These instantiations provide
a mechanism for easily maintaining privacy while enabling access to sen-
sitive data. However, in most real-world applications, users also desire
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accuracy. For randomized programs, like those we synthesize, accuracy
amounts to the intuition that we arrive at close to the right answer most
of the time (Dwork and Roth, 2014). As users define “the right answer”
by providing φs, we expect users desire a program p that maximizes the
probability that p |= φs.

Unfortunately, proving accuracy of randomized programs is a challeng-
ing task. Most proofs are constructed by hand, and as such are tailored to
the algorithm of interest. While there exist program logics for reasoning
about accuracy (Barthe et al., 2016b), automations of said logics (i) are so
slow as to dwarf the cost of synthesis (see Section 4.6), and (ii) themselves
reduce to synthesis (Chapter 5, also (Smith et al., 2019)). Considering
accuracy in addition to privacy therefore poses a significant challenge to
program synthesis, which necessitates our use of the weak notion of deter-
ministic satisfaction (Definition 4.3) to ensure programs have some utility
to an end user.

Usage Scenario and Privacy Guarantee

Here we propose a usage scenario based on the data analysis mechanisms
in this section and consider the resulting privacy guarantee. The following
discussion can be adapted to the mechanism design, although we expect
mechanism designers will not be interacting with real-world sensitive in-
formation. We will speak of two distinct entities: (i) the dataset maintainer
(DM), and (ii) the user (U).

Dataset Maintainer The dataset maintainer DM controls access to a
dataset D containing sensitive information. For all authorized users (in-
cluding U), DM maintains a privacy budget, the sum of which is the total
privacy budget for D. DM makes public as much of the semantic structure
of D as possible without leaking information. This includes the database
schema, descriptions of fields, and numerical data ranges when they hold
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for every possible entry in that field. For instance, a field containing a
percentage will always have values in the range [0, 100]. However, a field
recording age is (theoretically) unbounded, and so any range published
by DM will leak information about the contents of D. Lastly, DM makes
public Σ, a set of functions whose implementation is trusted and pro-
jections with sensitivities derived from the provided data ranges (e.g., a
function grade of type row(100 R that selects a student’s final grade from
the relevant row).

As our technique also produces sensitivity proofs, the dataset main-
tainer can easily verify that executing q on D will be cε-dp. When DM
receives a c-sensitive query q with a proof of sensitivity from a user, they
(i) verify the proof of sensitivity, (ii) evaluate q on D, and (iii) decrement
the privacy budget of U appropriately.

User To query D, the user U can synthesize a query and resulting proof
of sensitivity. At a minimum, this requires U to construct (i) input-output
examples and (ii) a maximal acceptable privacy cost. Input-output exam-
ples can be hand-crafted to appropriately disambiguate the desired query,
or be randomly-generated inputs and the corresponding outputs. The
maximal privacy cost is up to U, and might depend on total privacy budget
left and the possible value of the query result. Using these inputs, U can
use a privacy mechanism to instantiate a synthesis problem and send the
resulting query and associated proof of privacy to DM for consideration.

For numerical fields where DM has not provided a data range, U can
fine-tune Σ by providing best-guess data ranges. These ranges can be
converted to projections whose sensitivity is the size of the range using
the clipping technique in Airavat (Roy et al., 2010), lowering the privacy
cost.

More realistically, we might expect the user U to be multiple individuals
fulfilling different roles. For example, one could have a domain expert that
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constructs the relevant best-guess data ranges and random examples, and
an analyst that computes the appropriate outputs to specify some query.

Effective Privacy Guarantee In the scenario above, queries are synthe-
sized independently of a sensitive dataset, and are built exclusively from
trusted code and clipped projections. Numerical data ranges are only
provided if they hold for every possible entry, and so the only means of
egress for sensitive information is through noisy query answers released
by the dataset manager. A dataset manager is therefore able to maintain
the privacy guarantee on D, as each release of information is cε-dp with a
known c.

4.5 Implementation Details

We implemented our technique in a tool called Zinc, comprising ∼4500
lines of OCaml that interface with the Z3 SMT solver (de Moura and
Bjørner, 2008) for satisfiability checking.

Zinc implements a fair scheduling of the inference rules in Section 4.3,
so that any rule that is applicable will eventually be applied. The applica-
tion order of the rules is determined by a heuristic function that assigns
costs to subproblems. Zinc takes as input a set of input–output examples
and an upper bound on the budget. In the data analysis case, the choice
of privacy mechanism to use is determined by the types of the provided
examples.

Determinization Zinc maintains a work-list of candidate partial solu-
tions, and explores candidates in increasing heuristic order. When con-
sidering a candidate, all relevant inference rules are applied to generate
new candidates. To prevent the search space from exploding, Zinc utilizes
two common techniques from the type-directed synthesis literature to
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minimize the number of term-, type-, and sensitivity-applications. The
rules for introducing such applications either introduce free variables or
increase the number of wildcards, both of which expand the search space
unnecessarily.

To limit term applications, Zinc only enumerates terms in β-normal
form, rather than the equivalent β-expanded terms. That is, Zinc will
consider f x, but not (λy. f y) x, despite the two terms being equivalent.
Empirically, such terms are smaller and more interpretable. Zinc achieves
this by only applying the rule (App) to a wildcard whose goal type is a
function type, e.g. σ(k τ.

Zinc limits type and sensitivity applications by only applying rules
(TApp), (SizeApp), and (SensApp) when necessary to enable an application
of rule (Id). For example, in Example 4.10, to replace  Ωmset[row][∞](2R with
the function count of type ∀β.∀k. mset [β] [k](1 R, we must first apply
(TApp) and (SizeApp) to introduce quantifiers in the goal type. Rather than
expanding the goal type unnecessarily, Zinc greedily attempts to apply
(Id), and defaults to applying (TApp) and the like when abduction fails
due to a universal quantifier in the type of the term being substituted.

Pruning Strategy In Section 4.3, we give the invariant that any synthesis
state 〈φ, p〉 that has an unsatisfiable proof obligation φ can be pruned
without losing relative completeness. In our original strategy we eagerly
called the SMT solver to check satisfiability for every state. While every
call typically took less than a second, the overhead of SAT checking far
outweighed the benefits of pruning, resulting in an impractical algorithm.

Instead of calling the SMT solver on every subproblem, we imple-
mented a simple constraint solver that only performs unit propagation. The
solver looks for conjuncts of the form x = S, where x is a variable and S is a
sensitivity expression, and replaces all occurrences of x by S in the conjunc-
tion. If unit propagation fails to prove satisfiability, we use the number of



91

remaining sensitivity variables as a heuristic quantitative measure for how
likely it is for the formula φ to be unsatisfiable. We use this heuristic value to
order the states for exploration: intuitively, the more variables we cannot
easily eliminate with constant propagation, the harder it will be to satisfy
the constraints.

Constraint Solving Once Zinc has found a closed candidate program
that satisfies φs, it attempts to prove that the program satisfies the budget
constraints φk. Theorem 4.17 provides a mechanism for transforming the
proof obligation to an equisatisfiable formula in the undecidable theory of
mixed real and integer non-linear arithmetic. Fortunately, in our setting,
such constraints are reliably checkable (de Amorim et al., 2014). If neces-
sary, Zinc can relax the obligation by treating integers as reals, placing the
constraints in the decidable theory of real closed fields.

4.6 Evaluation

Our evaluation seeks to answer the following research questions:

RQ1 Is Zinc able to synthesize interesting differentially private queries in a
reasonable time?

RQ2 Is sensitivity-directedness useful in guiding the synthesis process?

RQ3 Can Zinc synthesize full privacy mechanisms?

Benchmarks Our first goal with benchmarking was to mimic a setting
where a data analyst wants to query a dataset with sensitive informa-
tion through a dp-enforcing system. We collected 4 real-world datasets
(Table 4.3) containing personal information that would warrant dp. For
example, the Adult Income dataset (Lichman, 2013) is census data and
contains data on gender, ethnicity, and income.
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Data Analysis Benchmark

Adult Income (1.5, 5, 8)
from 1994 census data, contains info on gender, ethnicity, profession, etc.

1 number of women who work > 40 hrs a week
2 cumulative years of education in military
3 number of people who make > 50k in trade
4 most common gender working in local government
5 population per ethnicity
6 profession with highest total work hours
7 number of people making > 50k per branch of government

Student Alcohol Consumption (1, 4, 8)
Portuguese schools student info on grades, family life, and weekend/weekday alcohol consumption

8 # of students who drink on the weekend and pay for extra classes
9 average final grade of students attending for rep. reasons
10 average weekend alcohol consumption per address type
11 family relationship status with highest grade
12 average final grade of students not drinking on the weekend
13 total absences per attendance reason
14 most common address type for those with poor family relations

Student Performance (2, 4, 6)
same as above, with performance, resource usage, participation, and personal info

15 number of students with satisfied parents and many absences
16 performance level with the highest average participation
17 average resource usage per parent satisfaction
18 hands raised by students with low discussion activity
19 average grade in the low performance bracket
20 are parents satisfied when their child is absent a lot?
21 total resource usage per performance bracket

COMPAS (3, 6, 8)
ProPublica data with info on criminal history and COMPAS scores, including risk of recidivism

22 number of elderly with high risk of violence
23 average failure to appear for youths with no priors
24 ethnicity with highest average recidivism
25 total priors per gender
26 # of people with many juvenile felonies and high recidivism risk
27 average recidivism per ethnicity
28 age category with the most priors

Iterative Privacy Mechanism Benchmark i Represents... Sens. Budget

k-means - compute k cluster centers from data # of updates 3 · i · ε
idc - answers query set by iteratively constructing dataset # of updates 2 · i · ε
cdf - given list of buckets, count elements per bucket # of buckets i · ε

Table 4.3: Datasets Zinc was tested over, including (i) the average number
of examples per benchmark, (ii) the maximum number of rows in an
example, and (iii) the number of projections added to the signature Σ; for
iterative mechanisms, ε is a fixed privacy cost
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Sensitivity-Directed Baseline
Benchmark Time Speedup Count Time Count |p| |φ|

Adult Income
1 Lap./1ε 2.12 1.1x 16,825 2.36 16,721 31 11
2 Lap./20ε 3.43 1.9x 26,506 6.65 39,365 33 12
3 Lap./168ε 0.04 4.3x 601 0.17 1,722 26 7
4 Exp./1ε 1.99 4.2x 11,610 8.44 32,299 26 8
5 PC/1ε 0.004 2.3x 36 0.009 75 24 9
6 Exp./168ε 3.77 8.7x 20,033 32.97 111,466 31 8
7 PC/1ε 3.53 1.4x 11,856 4.96 13,072 48 21

Student Alcohol Consumption
8 Lap./1ε 0.42 2.3x 4,495 0.95 7,561 25 8
9 Lap./20ε 5.03 1.5x 37,539 7.67 45,438 33 12
10 PC/5ε 3.28 1.4x 12,300 4.72 12,558 44 20
11 Exp./20ε 5.27 4.1x 28,503 21.69 81,563 34 12
12 Lap./100ε 6.26 3.0x 45,648 18.53 90,664 35 12
13 PC/100ε 3.35 1.4x 12,549 4.70 12,379 44 20
14 Exp./5ε 0.125 9.9x 1,030 1.24 6,161 24 6

School Performance
15 Lap./1ε 0.087 1.7x 1,210 0.15 1,529 26 7
16 Exp./100ε 9.67 15.3x 46,069 147.8 432,903 38 12
17 PC/100ε 5.53 1.1x 19,504 6.19 16,525 44 20
18 Lap./100ε 8.11 6.3x 56,131 51.03 213,231 37 12
19 Lap./100ε 4.23 1.3x 30,563 5.42 32,167 37 12
20 Exp./1ε 1.91 4.1x 11,499 7.77 29,824 26 8
21 PC/100ε 38.95 2.2x 98,935 85.37 143,448 51 25

COMPAS
22 Lap./1ε 0.015 1.6x 227 0.024 365 17 6
23 Lap./10ε 155.21 1.4x 813,878 219.78 858,686 36 15
24 Exp./10ε 0.98 2.3x 7,254 2.27 12,603 26 9
25 PC/15ε 0.042 13.1x 329 0.55 2,110 39 15
26 Lap./1ε 7.37 1.3x 55,240 9.38 55,157 33 11
27 PC/10ε 0.036 9.7x 284 0.35 1339 39 15
28 Exp./15ε 0.745 1.9x 6,184 1.41 6897 23 6

Iterative Privacy Mechanisms
k-means 0.278 3.5x 822 0.956 2,100 21 26
idc 3.491 2.82x 4440 9.845 10654 40 40
cdf - N/A - - - 32 -

Table 4.4: Results of evaluating Zinc; benchmark descriptions specify
the privacy mechanism and budget, and for all experiments, we report
(i) the CPU time needed by Zinc, (ii) the speedup in time compared to
the baseline, (iii) the number of programs explored, (iv) the size of the
solution in AST nodes, and (v) the size of the proof obligation in conjuncts
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There is no existing set of queries over the chosen datasets (or any other
dataset) that are (i) differentially private and (ii) designed to stress synthe-
sis tasks. Therefore, for every dataset, we created a number of benchmark
queries (data analysis benchmarks in Table 4.3) that are designed to extract
interesting information, be of varying complexity, and exercise the privacy
mechanisms from Section 4.4. We discuss the selection of benchmark
datasets and queries further in Section 4.6.

Our second goal was to explore the synthesis of full privacy mech-
anisms. We chose three mechanisms whose privacy guarantees can be
verified by DFuzz (iterative privacy mechanism benchmarks in Table 4.3).
These mechanisms represent a large portion of the case studies presented
in DFuzz (Gaboardi et al., 2013), and are based on real-world privacy mech-
anisms found throughout the literature. These mechanisms take advantage
of every feature of DFuzz our synthesis algorithm supports, including
recursion, the probability monad, and dependent pattern-matching.

Experimental Setup We have two instantiations of Zinc:

1. Sensitivity-directed Zinc: Our primary interest is the sensitivity-directed
strategy, where Zinc utilizes symbolic context constraints to direct the
search, as described in Section 4.5.

2. Baseline (type-directed): To contrast with the sensitivity-directed strategy,
we built a baseline version of Zinc that is type-directed in the style of
existing type-directed synthesis tools (Osera and Zdancewic, 2015; Feser
et al., 2015; Smith and Albarghouthi, 2016). The baseline searches the space
of programs in ascending size order, and does not exploit the generated
constraints to guide the search. The choice to construct a baseline, rather
than use an existing tool, is discussed in Section 4.6.

For each strategy, we ran Zinc on each benchmark with a timeout limit of
5 minutes. Table 4.4 shows the results. All times reported are in seconds.



95

RQ1: Synthesis Time Consider the results in Table 4.4. Overall, the
results demonstrate that our technique can synthesize non-trivial differen-
tially private computations over real datasets in a small amount of time.
In all benchmarks, our sensitivity-directed technique was able to discover
a solution, and in most benchmarks synthesis terminates in under 10
seconds.

The programs synthesized by Zinc are non-trivial, comprising func-
tions with complex types and involving advanced privacy mechanisms.
For example, let us consider the solution to benchmark 23, which takes as
input three example datasets of three rows each:

let bm23 x = avg (map f m) + Laplace(1/ε)
where f = failure-to-appear
where m = filter (fun y -> age-category(y) == "young") p
where p = filter (fun z -> priors(z) == none) x

The constants "young" and none are instantiated from the schema of the
COMPAS dataset. The solution involves 3 composed higher-order func-
tions, several projections and comparisons, and an aggregation, and is a
10ε-dp function (as the projection failure-to-appear maps on a scale from
0 to 10). Note program size |p| reported in Table 4.4 contains sensitivity
annotations, which we elide here for clarity. The proof obligation (also
elided) is satisfiable, and consists of 15 conjuncts.

RQ2: Sensitivity-Directed Synthesis To answer RQ2, we compare the
synthesis time of the sensitivity-directed configuration and the baseline
configuration. Ignoring benchmarks with approximately comparable per-
formance (difference in synthesis time 6 2 seconds), the average speedup
afforded by incorporating sensitivity into the search is ∼3.9x, and the max-
imum speedup is 15.3x. This significant improvement is a clear indication
of the importance of the sensitivity-directed strategy to our algorithm’s
efficiency.
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Figure 4.9: Performance comparison between Zinc and baseline, where
each benchmark is a pair in log-space comparing sensitivity-directed and
size-directed performance; top, middle, and bottom dotted lines are the
10x, 1x, and 0.1x levels of the efficiency gradient, and marginals projected
on the border

Consider benchmark 18: here, sensitivity-directed synthesis consid-
ers 56,131 programs before discovering the solution, while the baseline
technique requires 213,231 programs. Similar patterns are seen across
our benchmarks. See Figure 4.9 for a clearer picture of the distribution of
times across benchmarks.

The sensitivity-directed implementation consistently outperforms the
baseline. Most benchmarks lie between the 10x and 1x efficiency lines
in Figure 4.9, although there are several above the 10x line. Note the log-
scale on the graph: the benchmark furthest above this line boasts a 30x
improvement. This distribution of benchmarks indicates that sensitivity-
directed synthesis is an improvement over the baseline.

These improvements in the sensitivity-directed synthesis over the base-
line come despite the fact that Zinc does not explicitly prune the search
space. As the primary difference in implementation is the inclusion of
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let cdf buckets data = match buckets with
| [] -> return []
| x :: xs[i] ->

let-draw count =  ©R in
let-draw rest =  ©L(R)[i] in

 ©L(R)[i+1]

Figure 4.10: Partial synthesis problem for cdf (Gaboardi et al., 2013);
sensitivity-directed finishes in 190s, while size-directed times out.

the constant propagation heuristic (Section 4.5) in the sensitivity-directed
approach, we can infer that the reordering of candidate solutions given by
the heuristic effectively directs the search towards programs that are likely
to have satisfiable constraints, and thus be solutions to the synthesis prob-
lem. The effectiveness of the heuristic is aided by the fact that, even with
relatively simple higher-order combinators, such as map and filter, the
structure of the queries places considerable restrictions on the sensitivity
of the input functions.

RQ3: Privacy Mechanism Synthesis Consider privacy mechanism re-
sults in Table 4.4. Zinc was able to synthesize k-means and idc completely in
under 4 seconds, but timed out while synthesizing cdf. In the two bench-
marks that terminated, sensitivity-directedness contributed an average
∼3.1x improvement in synthesis speed. The benchmarks that terminate
are quite intricate (recall the implementation sketches of the terminating
benchmarks in Figures 4.3 and 4.4), as they contain recursion, the manipu-
lation of probability distributions, and dependent pattern-matching.

Note that Zinc timing out on a benchmark does not mean Zinc is
unhelpful to a mechanism designer. Rarely is an expert in differential
privacy synthesizing a mechanism from scratch. To explore the utility of
Zinc for partial program synthesis, we manually constructed a solution to
the cdf benchmark (also taken from Gaboardi et al. (2013)) and introduced
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four holes by replacing whole expressions with wildcards. By varying
the amount (from 1 to 4) and location of holes, we construct a total of 16
partial program synthesis benchmarks. The sensitivity-directed approach
finds completions for the holes in all but one benchmark (in Figure 4.10),
while the size-directed approach times out on two (Figure 4.10 plus one
more). When both terminate, however, the sensitivity-directed strategy
has a reduction in efficiency of ∼0.94x. As 10 benchmarks terminate in
under 1 second, and 2 more terminate in under 10 seconds, this tradeoff is
likely worthwhile to be able to fill in one more partial program.

Discussion of Design Choices

Choice of Baseline Our use of a baseline version of Zinc, as opposed
to an existing synthesis tool, is necessitated by the limitations in the im-
plementations of existing type-directed synthesis algorithms (e.g. Myth
(Osera and Zdancewic, 2015), Myth2 (Frankle et al., 2016), Bigλ (Smith and
Albarghouthi, 2016), and λ2 (Feser et al., 2015)) and the complexity of the
DFuzz type system. We found no tool that was amenable to modification
to handle the combination of recursion, dependent pattern-matching, the
probability monad, and sensitivity annotations.

Selection of Benchmarks Differential privacy is usually benchmarked
for (i) accuracy of a particular mechanism (Proserpio et al., 2014; Erlingsson
et al., 2014; Johnson et al., 2018b; Roy et al., 2010), (ii) scalability (Proserpio
et al., 2014; Narayan and Haeberlen, 2012; Roy et al., 2010), or (iii) case
studies highlighting features of a particular system (McSherry, 2009). None
of these cases produce large numbers of queries for testing synthesis.
Program synthesis benchmarks on tables and databases (Feng et al., 2017)
focus on tasks that are not differentially private.

In light of these limitations, we constructed a set of benchmarks to
evaluate Zinc. The benchmark datasets were selected because they have
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appeared in works on privacy and bias (Feldman et al., 2015; Larson et al.,
2016; Datta et al., 2017). The queries cover a range of query complexities
and instantiations of our technique, but are motivated by existing analysis
when possible (as in the COMPAS recidivism dataset (Larson et al., 2016)).

Sensitivity For each of our benchmark queries, we provide a sensitivity
budget of the minimal sensitivity necessary to compute the desired query,
which is derivable from the database schema and the desired semantics
of the benchmark query. We do not expect the user to always be able to
explicitly compute the appropriate sensitivity upper-bound, but in some
cases real-world considerations—e.g., the remaining privacy budget—can
inform the choice of sensitivity bound.

Accuracy/Privacy Tradeoff This work presents mechanisms that add
randomness to the output scaled only by the privacy parameter ε. Often,
randomness is dependent on the sensitivity of the query in addition to ε
(Dwork and Roth, 2014). This allows the mechanism to enforce a stronger
privacy guarantee: ε-dp instead of (c · ε)-dp. Our technique still applies:
low sensitivity now represents higher accuracy, instead of a cheaper pri-
vacy cost.

4.7 Related Work

Type-directed Synthesis Our contributions are inspired by works on
type-directed synthesis. Compared to Myth (Osera and Zdancewic, 2015;
Frankle et al., 2016), λ2 (Feser et al., 2015), and Bigλ (Smith and Albargh-
outhi, 2016), which use a Hindley-Milner type system, we use a richer
type system that adds linear and dependent types to aid in synthesizing
programs to meet privacy constraints. Polikarpova et al. (2016) perform
synthesis over the powerful refinement type system of liquid types (Ron-
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don et al., 2008). However, our techniques are incomparable, since liquid
types (as defined and used) cannot reason about probabilistic hyperprop-
erties like differential privacy.

Synthesis for Data Manipulation The main target of dp in general, and
this work in particular, is data analysis. Our work follows the tradition
of program synthesis for various data-manipulation tasks (Gulwani et al.,
2012; Le and Gulwani, 2014; Polozov and Gulwani, 2015; Le and Gulwani,
2014; Yaghmazadeh et al., 2017; Zhang and Sun, 2013; Wang et al., 2017b,a;
Smith and Albarghouthi, 2016; Miltner et al., 2018). Perhaps the most
closely related work to ours is Bigλ (Smith and Albarghouthi, 2016), also
presented in Chapter 3, which targets data-analysis programs composed
of higher-order combinators like map and reduce. Our instantiation of our
technique extends these ideas to a dp setting. Additionally, our work can
be applied to SQL synthesis (Zhang and Sun, 2013; Wang et al., 2017a;
Yaghmazadeh et al., 2017) under dp constraints, as we discuss below.

Differential Privacy Systems Systems enforcing differential privacy on
user queries are defined over languages of higher-order combinators (Mc-
Sherry, 2009; Roy et al., 2010; Proserpio et al., 2014) or forms of SQL queries
(Johnson et al., 2018b; Narayan and Haeberlen, 2012). Our presented ap-
proach, based on the DFuzz type system, is general to apply to a wide
range of settings. We instantiated our algorithm with a language of higher-
order combinators. SQL queries can also be captured with join operators,
like the one used in PINQ (McSherry, 2009).

Work on DFuzz includes the construction of metric-preserving seman-
tics (de Amorim et al., 2017) and a type-checking algorithm (de Amorim
et al., 2014). Type-checking DFuzz programs is non-trivial: the natural top-
down approach requires context splitting, which necessitates a search over
sensitivity terms. Our approach avoids this search by using SCCs, while
the work of de Amorim et al. (2014) extends DFuzz sensitivity expressions.
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Recently, constraint-based program synthesis techniques have been
applied to the problem of proving differential privacy of advanced dif-
ferentially private algorithms (Albarghouthi and Hsu, 2018b). There, the
authors use a heavy-weight logical encoding of the space of proofs of ε-dp
to discover complex proofs using coupling arguments. We utilize DFuzz
to compute program sensitivities in a more lightweight fashion to ease
synthesis.
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5 automating proofs of high-probability
guarantees

The utility of a differential privacy mechanism is measured in terms of
accuracy, which, due to the probabilistic nature of dp, is phrased as a high-
probability guarantee: for all program inputs, an output sampled from the
final distribution satisfies some accuracy condition ϕ except with some
probability β. While simple to state, accuracy guarantees pose challenges
for automated verification: current techniques (surveyed by Baier et al.
(2018) and Katoen (2016)) focus on more tractable models of probabilistic
programs, and are mostly restricted to closed programs with fixed inputs
and finite state spaces.

In this chapter we present an automated technique for proving high-
probability guarantees. Our approach is based on trace abstraction (Heiz-
mann et al., 2009, 2010, 2013; Farzan et al., 2013), a proof technique that
(i) represents a program P by a language L(P) of execution traces through
the CFG, and (ii) proves every trace is correct by covering L(P) with proof
automata computed via computed via predicate abstraction (Graf and Saïdi,
1997) or Craig interpolation (McMillan, 2006). To extend this to the proba-
bilistic setting, we prove that individual traces τ satisfyϕ except with some
failure probability βτ, and then generalize the proof into an automata.
P then satisfies ϕ if every trace is correct, and the accumulated failure
probability

∑
τ∈L(P) βτ is less than β.

The most technically intricate step in this process is proving a trace τ
correct. We follow the design principle of reducing probabilistic reasoning to
non-deterministic reasoning (Barthe et al., 2016c, 2012, 2014; Hsu, 2017) to
enable the application of classical verification techniques to probabilistic
traces. Specifically, we encode the verification condition as a constraint-
based synthesis problem of the form ∃f.∀X.ϕ, where f chooses between
different non-deterministic axiomatizations of probability distributions. This
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pick trace

prove trace
trace t

{jpre} P {jpost}

failure
probability b

t 2 L(P) \ L(A)

generalize trace

add At to A

t 2 L(At)

`b {jpre} t {jpost}
proof of trace t

`b {jpre} At {jpost}

Figure 5.1: Main loop of verification algorithm

limits the precision of the analysis, but the resulting algorithm compares
favorably to standard trace abstraction (Heizmann et al., 2009, 2013) and
aHL (Barthe et al., 2016c), and boasts a high degree of automatability.

The contents of this chapter are based on work by Smith et al. (2019).

5.1 Overview and Illustration

Suppose we are given a probabilistic program P, pre- and post-conditions
ϕpre and ϕpost, and a numeric expression β representing the maximum
allowed failure probability. Our goal is to prove that if we start executing
P from any state satisfying ϕpre, the probability that the output state does
not satisfy ϕpost upon termination is at most β. This property is denoted
by the following formula, reminiscent of a Hoare triple:

`β {ϕpre} P {ϕpost}

We view P as a control-flow automaton whose language L(P) is the set of
all traces from the program’s entry location to its exit location. Our proof
rule overapproximates L(P) by a larger set of traces, represented by a set of
finite automata A, while ensuring that the total failure probability across
all traces in L(A) is at most β.

To apply our proof rule automatically, we apply an algorithmic tech-
nique summarized in Figure 5.1. The technique repeatedly tries to (i) pick
a program trace τ ∈ L(P) outside the approximation L(A), (ii) prove that
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`β {ϕpre} τ {ϕpost}, i.e., the probability that the trace falsifies the Hoare
triple is at most β, and then (iii) generalize the trace τ into an automaton
Aτ encoding a set of traces with total failure probability at most β. Our ap-
proach succeeds if it constructs a set of automata A modeling all program
traces L(P), with total failure probability at most β.

Illustrative Example: Loop-free Program

To warm up, we consider the loop-free program in Figure 5.2a. The func-
tion ex1 takes a single [0,1]-valued input p and returns a Boolean value y.
Our goal is to prove the following accuracy property:

`p {true} ex1(p) {¬y}

In words, the program fails to return y = false with probability at most
p. This property can be established informally: (i) the probability that
the program takes the then branch and returns y = true is 0.5p; (ii) the
probability that it takes the else branch and returns y = true is 0.25p.
Therefore, the failure probability is 0.5p+ 0.25p 6 p.

Illustrating Proof Artifacts

We begin by describing the proof artifacts constructed by our approach.
The program ex1 is presented as a control-flow automaton over the alphabet
of program statements, as shown in the left side of Figure 5.3. Edge labels
of the form [c] are guards (also known as assume statements) encoding
possible branches of the conditional statement. Accepted traces start from
the initial node in and end in the final, accepting node ac.

Our verification approach focuses on one trace at a time. There are two
possible traces in our example program: one through the then branch and
one through the else branch of the conditional. We refer to these traces as
τ1 and τ2, respectively.
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let ex1 p = do {
x ~ bern(0.5)
if x then

y ~ bern(p)
else

y ~ bern(0.5 * p)
return y

}

(a) Without loop

let ex2 q n ε = do {
i = 0
while (i < n) do {

a[i] ~ Lap(q[i], 1/ε)
}
return a

}

(b) With loop

Figure 5.2: Examples of probabilistic programs
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th els
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x ⇠ bern(0.5)

[x]

y ⇠ bern(p) y ⇠ bern(0.5p)
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0 0.5 0.5 0.5 + p
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t2

t01

true

true

x x

An alternative annotation for t1

Figure 5.3: A simple probabilistic program and possible trace annotations

To prove accuracy properties about each trace, our technique annotates
traces with auxiliary information. Let us consider the annotated trace τ1 in
Figure 5.2a. Each node along the trace is annotated with two labels: (i) the
top/blue label is a logical formula representing a set of reachable program
states at that point (these can be viewed as Hoare-style annotations); (ii) the
bottom/red label is an expression representing the probability that the
program does not end up in the blue states. Consider node in from τ1: it
is labeled by true and 0, indicating that the probability of failing to arrive
in a program state satisfying true is 0 (as expected). However, consider
node ac: it is labeled with ¬y and p, indicating that the probability of
failing to arrive in a state where y = false is at most p. The other program
trace τ2, which traverses the other branch, is similar; the annotation of τ2

demonstrates that its failure probability is at most 0.5p.
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At this point we have considered all of the ex1’s traces. If we naively
sum up their probabilities of failure to bound the total failure probability,
we get a failure probability of at most p+ 0.5p = 1.5p, which is too weak—
we wanted to prove an upper bound of p. However, we can give a more
precise analysis since the two traces consider two mutually disjoint events:
one path assumes x is true while the other assumes x is false. In this case,
we can soundly take the maximum of the two failure probabilities, 0.5p
and p, arriving at a total failure probability of p and concluding the proof.

Given a labeled trace, it is relatively straightforward to check if the
annotations are valid. However, constructing the annotations may not be
so easy. The main challenge is selecting labels for the results of sampling
instructions—the invariants are not fully determined by the program,
and in general the proper choice depends on the target property we are
trying to establish. For instance, it is also possible to give an alternative
annotation of τ1, denoted τ ′1 in Figure 5.2a. Node if is labeled with x and
0.5, indicating that the probability of not arriving in a state where x = true
is at most 0.5.

This annotated trace illustrates another general feature of our analy-
sis: failure probabilities sum up along traces. Intuitively, this principle
corresponds to a basic property of probabilities called the union bound:
Pr [A ∪ B] 6 Pr [A] + Pr [B] for any two events A and B. In particular, if A
and B are interpreted as bad events—events violating labels at different
nodes—the probability of any failure occurring along a trace is at most the
sum of the failure probabilities of individual steps. In τ ′1, the probability
of y = true at node ac of τ ′1 is p, so the final failure probability computed
for this trace is 0.5 + p. While this annotation in τ ′1 is sound, it is too weak
to prove our desired property.
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Encoding Trace Semantics

Our technique cleanly separates probabilistic assertions into two pieces:
a non-probabilistic component describing the state of program variables
(the blue annotations in Figure 5.3), and a single number summarizing
the probabilistic part of the assertion (the red annotations in Figure 5.3).
As a result, we can reduce probabilistic reasoning to logical reasoning,
allowing us to harness the power of SMT solvers and synthesis techniques.

To illustrate, we show how to construct trace labels for τ1. Our method
proceeds in two steps. First, like in traditional verification-condition genera-
tion, we encode the semantics of trace τ1 and the specification as a logical
formula, which, if valid, implies that `p {true} τ1 {¬y}. Specifically, we
construct the following (simplified, see Section 5.5) verification condition:

∃fx, fy.∀x,y,ωi. (ω0 = 0 ∧ϕ)⇒ (¬y∧ω3 6 p) (5.1)

Above,ϕ is a set of conjuncts, each encoding the semantics of one statement
in τ1:

ϕ :=

 fx = 1⇒ x∧ω1 = ω0 + 0.5
fx = 2⇒ ¬x∧ω1 = ω0 + 0.5
fx = 3⇒ ω1 = ω0


︸ ︷︷ ︸

x∼Bern(0.5)

∧ (x∧ω2 = ω1)︸ ︷︷ ︸
[x]

∧

 fy = 1⇒ y∧ω3 = ω2 + 1 − p

fy = 2⇒ ¬y∧ω3 = ω2 + p

fy = 3⇒ ω3 = ω2


︸ ︷︷ ︸

y∼Bern(p)

Let us explain how the encoding models the program P. The variables
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ωi are fresh real-valued variables that represent the probability of failure
along the path—ω0, the initial probability at node in, is constrained to
0. The right-hand side of the implication in Equation (5.1) encodes the
postcondition ¬y and the upper bound on the failure probabilityω3 6 p.

The more interesting parts of the encoding are the existentially quanti-
fied variables fx, fy, which appear in ϕ; we assume that fx, fy ∈ {1, 2, 3}.
These are used to select an axiomatization for each sampling statement. Syn-
thesizing the right values for fx and fy allows us to show that Equation (5.1)
is valid, and therefore prove correctness of τ1. For instance, if fx is set
to 1, then x ∼ Bern(0.5) is encoded as an assignment statement x← true
with an accumulated failure probability of 0.5, since x is not true with a
probability of 0.5; if fx is set to 3, then x is treated as a non-deterministic
Boolean, incurring no probability of failure.

It is not hard to check that any proof of validity of Equation (5.1) must
set fx = 3 and fy = 2, as otherwise we cannot establish the postcondition,
¬y, or the upper bound on failure, p. In general, we treat fx and fy as
uninterpreted functions whose arguments are program inputs, so that the
choice of axiomatization may depend on the program state (Section 5.5
presents the general form).

Labels via Craig Interpolation

Suppose that we have proved validity of Equation (5.1) and discovered
that setting fx = 3 and fy = 2 yields a satisfiable formula. Plugging these
values into Equation (5.1) and negating the postcondition, we arrive at the
following unsatisfiable formula:

ω0 = 0 ∧ω1 = ω0︸ ︷︷ ︸
x∼Bern(0.5)

∧ x∧ω2 = ω1︸ ︷︷ ︸
[x]

∧¬y∧ω3 = ω2 + p︸ ︷︷ ︸
y∼Bern(p)

∧(y∨ω3 > p)

In first-order logic, it is known that if A ∧ B is unsatisfiable, then there
is a formula I over the shared vocabulary of A and B such that A ⇒
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I and I ⇒ ¬B are valid. I is called a Craig interpolant. Intuitively, an
interpolant overapproximatesAwhile maintaining unsatisfiability with B;
this overapproximation can be seen as trying to generalize the assertions
as much as possible. In our unsatisfiable formula above, we can compute
a sequence of interpolants by splitting the formula into A and B segments
after every statement’s encoding. The resulting interpolants compactly
encode the two labels on traces, the sets of states and probabilities of
failure. E.g., consider the split:

A := ω0 = 0 ∧ω1 = ω0︸ ︷︷ ︸
x∼Bern(0.5)

∧ x∧ω2 = ω1︸ ︷︷ ︸
[x]

B := ¬y∧ω3 = ω2 + p︸ ︷︷ ︸
y∼Bern(p)

∧(y∨ω3 > p)

A possible interpolant for A ∧ B is I := ω2 = 0. This indicates that any
program state is reachable at node th (since program variables are uncon-
strained in I) with a probability of failure 0. The interpolant condition
ensures that I can only mentionω2, the only variable shared by A and B.

Illustrative Example: Handling Loops

We now consider a more complex example with loops, ex2 in Figure 5.2b.
ex2 is a simplified sketch of a differential privacy mechanism. The program
ex2 takes an array of integersq of lengthn, and constructs an arrayawhose
values are noisy versions of those in q. Specifically, for each element q[i],
a[i] is noise drawn from the Laplace distribution with mean q[i] and scale
1/ε, where ε > 0 is a real-valued input to the program. All primitive
distributions are defined in Section 5.2.
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Figure 5.4: A looping illustrative example

Our goal is to prove the accuracy property

`p·n {true} ex2(q,n, ε) {ϕpost}

where the post-condition is defined to be

ϕpost := ∀j ∈ [0,n). |a[j] − q[j]| 6 1
ε

log (1/p)

In other words, for any p ∈ (0, 1], we want to verify that the difference
between a[j] and q[j] is bounded by a function of ε and p. Observe that
ϕpost involves input parameters q,n, ε, and p, but p does not appear in the
program—the accuracy property is a parameterized family of properties.
From our postcondition, we see that we can guarantee tighter bounds
on the error—the difference between the exact answer q[j] and the noisy
answer a[j]—if we are willing to allow this property to be violated with
larger probability p · n. This style of postcondition is common for many
randomized algorithms, capturing the relationship between accuracy—
how far the results are from the exact values—and probability of failure,
or how often the target property will not hold.

Trace Generalization The control-flow automaton representation of ex2
is shown in the box in Figure 5.4. While the total number of loop iterations
is at most the input parameter n in the original program, the automaton
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abstraction overapproximates these program behaviors with an infinite
number of traces due to the loop. Therefore, unlike our first example,
we cannot construct a proof for every trace individually. Our technique
proceeds by picking traces, proving them correct, and generalizing them into
automata representing infinite sets.

Let us first consider trace τ1 in Figure 5.4; this trace does not enter the
loop. The trace is easily shown to be correct since not entering the loop
implies that n 6 0, vacuously implying ϕpost with failure probability 0.
More interesting is trace τ2 in Figure 5.4, which executes the loop body
once and exits. The formula ϕ in the annotation is defined as follows:

ϕ := ∀j ∈ [0, i). |a[j] − q[j]| 6 1
ε

log (1/p)

Notice the probability of failure is p · i on nodes w, w1, w2, and w’. After
loop exit, using the exit condition, we conclude that the probability of
failure is p · n. Informally, these labels capture the fact that the failure
probability depends on how many times we have executed the loop, which
is tracked in the counter i.

Our algorithm discovers that the labels are inductive: no matter how
many times we execute the loop, the probability of failing to satisfyϕ∧i <

n at loop entry is p · i. Therefore, the algorithm generalizes this trace into
an infinite set of traces by adding an edge from node w’ to w1 with the
statement [i < n].

With this additional edge in place, we now have an automaton repre-
senting all traces that go through the loop at least once. The total failure
probability of those traces is the label under node ac: p · n. Combined
with trace τ1, we have covered all the traces of ex2, proving that the total
probability of failure is p · n+ 0 = p · n as desired.
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Selecting Axioms for the Laplace Distribution The sampling statement
a[i] ∼ Lap (. . . ) in τ2 is encoded by the following logical formula:

|a[i] − q[i]| 6 1
ε

log (1/fa(i,p,n))∧ω3 = ω2 + fa(i,p,n)

The left conjunct specifies that we can assume that the difference between
a[i] and q[i] is at most 1

ε
log (1/fa(i,p,n)); the right conjunct specifies that

this assumption fails with a probability of fa(i,p,n). We treat fa as an
uninterpreted function with range (0, 1], so that there are infinitely many
possible interpretations of fa corresponding to different failure probabili-
ty/accuracy tradeoffs for the Laplace distribution. To get the annotation
proving correctness of τ2 in Figure 5.4, our technique synthesizes the in-
terpretation fa(i,p,n) = p. With this choice, our analysis accumulates a
probability of failure of p for every loop iteration, ending up with a total
probability of failure of p · n.

5.2 Programs, Automata, and Properties

In this section, we formalize our program model and accuracy specifica-
tions. Unlike in Chapters 3 and 4, the semantics of programs are important
for reasoning about the validity of our proof technique.

Program Model and Semantics

To model probabilistic computation mathematically, we use probabil-
ity sub-distributions. A function µ : C → [0, 1] defines a discrete sub-
distribution over a set C if it is non-zero for at most countably many ele-
ments inC, and

∑
c∈C µ(c) 6 1; we will abbreviate discrete sub-distribution

as distribution throughout this paper. We will often write µ(C ′) for
a subset C ′ ⊆ C to mean

∑
c∈C ′ µ(c). We write dist(C) for the set of
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Name Parameters Semantics s(d)

Bernoulli (Bern(e)) e ∈ [0, 1] µ(true) = s(e) and µ(false) = 1 − s(e)
Uniform (Unif(e)) e is a finite set µ(c) = 1/|s(e)|, for c ∈ s(e)
Laplace (Lap (e1, e2)) e1 ∈ Z; e2 ∈ R>0 µ(c) ∝ exp

(
− |c−s(e1)|

s(e2)

)
, for c ∈ Z

Exponential (Exp(e1, e2)) e1 ∈ Z; e2 ∈ R>0 µ(c) ∝ exp
(
−c−s(e1)

s(e2)

)
, for c > s(e1)

Table 5.1: Distribution expressions and their semantics

all distributions over C. The support of a distribution µ is defined as
Support(µ) := {c ∈ C | µ(c) > 0}.

We focus on discrete sub-distributions to keep the measure theory
to a minimum. As a consequence, we only allow programs to sample
from primitive discrete distributions. Supporting continuous primitive
distributions—e.g., the Gaussian distribution—would not introduce any
difficulties beyond requiring a more technically involved definition of the
program semantics.

Program Expressions

We fix a set of variables V that appear in the program. A program state s is
a map assigning every variable v ∈ V to a value. We will use S to denote
the set of all possible states. Given variable v, we use s(v) to denote the
value of v in state s. Given constant c, we use s[v 7→ c] to denote the state s
with variable vmapped to c. The semantics of an expression e is a function
JeK : S→ D from a state to an element of some type D. For instance, the
expression x+ y in state s is interpreted as Jx+ yK (s) = s(x) + s(y). We
will often abbreviate JeK (s) by s(e).

Distribution Expressions A distribution expression d is interpreted as a
distribution family JdK : S→ dist(D), mapping a state in S to a distribution
over D with countable support. Our framework can naturally handle
any distribution expression that can be interpreted as a discrete distribu-
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tion. For concreteness, we will consider the four primitive distributions in
Table 5.1.

Consider the Bernoulli distribution expression, Bern(e). Given a state s,
semantically Bern(e) is the distribution µ ∈ dist(B) where µ(true) = s(e)
and µ(false) = 1 − s(e). Similarly, the uniform distribution expression
Unif(e), where e encodes to a finite set, is interpreted as the distribution
assigning equal probability to every element in s(e).

We also use the (discrete) Laplace distribution. For a state s, the distribu-
tion expression Lap (e1, e2) is semantically the discrete Laplace distribution
with mean s(e1) and scale s(e2): for every integer c ∈ Z, it assigns a probabil-
ity proportional to exp

(
− |c−s(e1)|

s(e2)

)
. The (discrete) exponential distribution

expression Exp(e1, e2) is similar, but only assigns positive probability to
integers above the shift s(e1).

We implicitly assume that arguments of distribution expressions are
well-typed and valid.

Programs, Statements, and Traces

Our verification technique will target programs written in a probabilistic,
imperative language. The basic statements are drawn from a set Σ:

1. Assignment statements v← e, where e is an expression over V , e.g., v1+v2.

2. Sampling statements v ∼ d, where d is a distribution expression.

3. Assume statements assume(b), where b is a Boolean expression over V .

A trace τ is a finite sequence of statements st1; · · · ; stn, and a program P is
interpreted as a (possibly infinite) set of traces L(P). We include full details
of the programming language in Appendix C.5; the interpretation is stan-
dard, using assume statements to model typical control-flow constructs.
For instance, a conditional statement if b then τ1 else τ2 can be modeled as
the pair of traces assume(b); τ1 and assume(¬b); τ2. By construction, traces
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Jv← eK (s) := unit(s[v 7→ JeK (s)])
Jv ∼ dK (s) := bind(JdK (s), λx. unit(s[v 7→ x]))

Jassume(b)K (s) := if JbK (s) then unit(s) else 0
Jst ; τK (s) := bind(JstK (s), JτK)

Figure 5.5: Statement and trace semantics

in L(P) are semantically disjoint—no trace in L(P) is a prefix of (or equal
to) any other trace in L(P), and the first differing statements between any
two traces are of the form assume(b) and assume(¬b).

Trace Semantics We interpret a trace τ as a function JτK : S → dist(S)
from input states to distributions over output states. To define this se-
mantics formally, we need two standard constructions on distributions.
The map unit : D → dist(D) maps a ∈ D to the Dirac distribution δa
at a, i.e., the distribution that returns 1 at a and 0 otherwise. The map
bind : dist(D1)→ (D1 → dist(D2))→ dist(D2) combines probabilistic com-
putations in sequence: bind(µ, f)(a2) =

∑
a1∈D1

µ(a1) · f(a1)(a2). These
maps are the usual unit and bind for the (sub-)distribution monad. Then,
we can give semantics to basic statements and traces as shown in Figure 5.5.

Finally, the semantics of a program P is defined as the aggregate of its
traces. Formally, JPK : S→ dist(S) is defined as

JPK (s) :=
∑
τ∈L(P)

JτK (s)

where each term JτK (s) is the output distribution from running τ starting
from input s, and the sum of distributions is defined pointwise. For any
disjoint set of traces corresponding to a program P, the sum on the right-
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hand side is indeed a distribution.

Programs as Automata

We can encode the set of possible traces of a program P as a regular
language L(P) represented by all paths through its control-flow graph.
We begin with a general definition of automata over program statements,
and then show how we represent programs as automata.

Automata over Statements

A finite-state automaton over statements A is a graph 〈Q, δ〉, where

1. Q is a finite set of nodes.

2. δ ⊆ Q× Σ×Q is the transition relation, where Σ are basic statements.

3. qin,qac ∈ Q are special nodes called the initial and accepting nodes, respec-
tively.

We will use qi
st−→ qj to denote that 〈q1, st,qj〉 ∈ δ. We write L(A) for the

language of traces accepted by A, where a trace st1, . . . , stn is accepted iff{
qin st1−→ q1,q1

st2−→ q2, . . . ,qn−1
stn−→ qac

}
⊆ δ. It will sometimes be useful

to use multiple automata to model the traces in a single program. We
will use L(A) to denote the union of all languages accepted by a set of
automata A, i.e.,

⋃
A∈A L(A).

We assume that all nodes q ∈ Q can reach the accepting node qac via
the transition relation δ, and that there are no transitions starting from qac.
We also assume that automata model well-formed control flow, i.e., (i) all
nodes qi ∈ Q have at most two outgoing transitions and (ii) if qi

st1−→ qj and
qi

st2−→ qk for j 6= k, then st1, st2 are of the form assume(b1) and assume(b2),
such that b1 ≡ ¬b2.



117

From Program Traces to Automata

We will identify a program with an automaton representing its its control-
flow graph (CFG). A program P is of the form 〈L, δ〉, where the nodes L of
the automaton denote the set of program locations (e.g., line numbers). The
special nodes `in, `ac ∈ Lmodel the first and last lines of the program. To
ensure there is no control-flow non-determinism, we assume that for any
`i

assume(b)−−−−−→ `j, there is a transition `i
assume(¬b)−−−−−−→ `k.

We use V in ⊆ V to denote the set of input variables, which are not
modified by the program. We will also use Vdet ⊆ V to denote the set of
program variables whose values are assigned deterministically, i.e., not
affected by probabilistic choice—by definition, V in ⊆ Vdet. (We may not be
able to determine Vdet exactly in practice, but we can under-approximate
it via a simple static analysis.)

Probabilistic Accuracy Properties

We will define specifications using the Hoare-style statement

`β {ϕpre} τ {ϕpost}

where the precondition ϕpre ⊆ S and postcondition ϕpost ⊆ S are sets of
program states, and the failure probability β is a [0, 1]-valued function over
input variables V in. For simplicity, we will treat β as an expression over
V in—e.g., 0 or p · n in Section 5.1—and use s(β) to denote the value of β
in state s.

We say that `β {ϕpre} τ {ϕpost} is valid iff for any state s ∈ ϕpre, we have
µ(ϕpost) 6 s(β), where µ = JτK (s) and ϕpost = S \ ϕpost. In other words,
the probability that the trace starts in ϕpre and does not end up in ϕpost is
upper bounded by β. We extend this notation to programs P in the natural
way, writing `β {ϕpre} P {ϕpost} iff for any input state s ∈ ϕpre, the output
distribution µ = JPK (s) satisfies the bound µ(ϕpost) 6 s(β).
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5.3 Trace Abstraction Modulo Probability

With the preliminaries out of the way, we begin to introduce a version
of trace abstraction for probabilistic programs and show how to use it to
prove accuracy specifications. Given a program P, suppose we want to
establish the following accuracy specification: `β {ϕpre} P {ϕpost}. We will
overapproximate the traces of P with a set of automata A and analyze each
automaton separately, so we can focus on smaller groups of possible traces.
If we can show that the probability ϕpost does not hold across all automata
is at most β, this implies the accuracy specification. We formalize this
argument in the following proof rule.

Theorem 5.1 (General proof rule). The specification `β {ϕpre} P {ϕpost} is
valid if there exists a set of automata A such that

L(P) ⊆ L(A) (Trace inclusion)

∀s ∈ ϕpre.
∑

τ∈L(A)

JτK (s)(ϕpost) 6 s(β) (Failure upper bound)

Theorem 5.1 is proven in Appendix C.1. This proof rule is concise but
difficult to apply in practice, even given the set of automata A—while the
trace inclusion property can be checked via regular language inclusion,
the failure probability upper bound is more complicated. To make this
second condition easier to check, we enrich the automata with additional
information on each state; local properties of these labeled automata will
then imply the failure probability upper bound.

Enriching Automata with Labels

We work with automata where every node is labeled with a predicate on
states (equivalently, a set of states), and a function representing the failure
probability—we call such automata failure automata. The rough intuition
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is that at each node q, the predicate label represents a program invariant
that holds on all traces reaching q from the beginning of the program,
except with probability given by the failure probability label.

Definition 5.2 (Failure Automata). A failure automaton A = 〈Q, δ, λ, κ〉 is
an automaton 〈Q, δ〉 with two labeling functions, λ and κ, where

1. λ maps every node q ∈ Q to a set of states, and

2. κ maps every node q ∈ Q to a [0,1]-valued function over Vdet.

We say that A is well-labeled iff the following conditions hold:

1. κ(qin) = 0 and κ(qac) is a [0, 1]-valued function over the input variables V in ⊆
Vdet, and

2. for every transition qi
st−→ qj, the statement

`wpf(κ(qj),st)−κ(qi) {λ(qi)} st {λ(qj)}

is valid where wpf is a weakest-precondition operation over failure-probabilities:
wpf(e, st) := e for assume and sampling statements, and wpf(e1, v ← e2) :=

e1[v 7→ e2].

The two conditions ensure that if we take any trace τ ∈ L(()A), then
`κ(qac) {λ(q

in)} τ {λ(qac)} is valid. Point (2) ensures that failure probability
accumulates additively as we move along the trace, starting from being 0
at qin, as stipulated by point (1). Crucially, both points are local conditions:
they can be easily checked given a failure automaton. However, coming
up with well-labeled automata for a given program is not at all trivial—we
return to this question in the next two sections.

Example 5.3. Recall our example from Section 5.1, illustrated in Figure 5.3.
The lower part of Figure 5.3 shows a failure automaton named τ ′1 with λ and
κ shown above and below the nodes, respectively. Notice that the initial node
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in is labeled with λ(in) := true and κ(in) := 0. Focusing on the edge from
node th, the labeling at ac satisfies condition (2) for well-labeledness in Defi-
nition 5.2. The condition says that the following statement must be valid: `p
{x} y ∼ Bern(p) {¬y}. The failure probability p is the simplification of the ex-
pression wpf(0.5+p,y ∼ Bern(p)) − 0.5. The statement is valid since y is true
with probability p after executing y ∼ Bern(p).

The following theorem (whose proof is provided in Appendix C.1) es-
tablishes soundness of annotations on well-labeled automata. Specifically,
the failure probability label on qac—namely, κ(qac)—is an upper bound
on the probability that executions through A do not end up in a state in
λ(qac).

Theorem 5.4 (Well-Labeled Automata Soundness). Let A be a well-labeled
failure automaton. Then, for every s ∈ λ(qin) and µ = JτK (s), we have∑

τ∈L(A)

µ(λ(qac)) 6 s(κ(qac))

Proofs from Well-labeled Automata

Now that we have established soundness of well-labeled automata, we
refine our original proof rule (Theorem 5.1) using failure automata. The fol-
lowing theorem (proven in Appendix C.1) demonstrates how to establish
correctness using a set of failure automata.

Theorem 5.5 (Proof Rule with Failure Automata). The statement

`β {ϕpre} P {ϕpost}

is valid if there exist well-labeled automata A = {A1, . . . ,An} such that the fol-
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lowing conditions hold:

L(P) ⊆ L(A) (Trace inclusion)

∀i ∈ [1,n].ϕpre ⊆ λi(qin
i ) (Precondition inclusion)

∀i ∈ [1,n]. λi(qac
i ) ⊆ ϕpost (Postcondition inclusion)

∀s ∈ ϕpre.
n∑
i=1

s(κi(q
ac
i )) 6 s(β) (Failure upper bound)

The trace, precondition, and postcondition inclusion conditions are the
same as in trace abstraction for non-probabilistic programs. The failure
probability upper bound condition ensures that the overapproximation of
failure probability resulting from abstraction does not exceed β. Notice
that precondition and postcondition inclusion checks can be performed us-
ing an SMT solver, assuming labels are encoded in a supported first-order
theory. Similarly, the failure probability upper bound condition involves
summing up the labels on the accepting nodes of all failure automata,
allowing us to perform the check with an SMT solver.

Example 5.6. Recall the example program ex2 from Section 5.1, illustrated in
Figure 5.4. The two automata, denoted τ1 and τ2 in Figure 5.4, are well-labeled.
The automata cover all program traces. The initial nodes, denoted in, have the
labels λ as true, therefore satisfying the precondition inclusion condition. The
accepting nodes, denoted ac, both imply the postcondition, ϕpost. Finally, the
sum of the failure probabilities on accepting nodes is 0+p ·n 6 p ·n, satisfying
the failure probability condition.

5.4 Constructing Trace Abstractions

Theorem 5.5 reduces checking accuracy properties to finding a set of
well-labeled automata. Our algorithm for automating this proof rule is
technically complex, and spans the following two sections. Here, we will
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init
A −→ ∅

τ ∈ L(P) ∩ L(A) Aτ = label(τ,ϕpre,ϕpost,β)
trace

A −→ A ∪ {Aτ}

A = 〈Q, δ, λ, κ〉 ∈ A qi,qj ∈ Q st ∈ Σ
A ′ =

〈
Q, δ ∪

{
qi

st−→ qj

}
, λ, κ

〉
`wpf(κ(qj),st)−κ(qi) {λ(qi)} st {λ(qj)}

generalize
A −→ (A \ {A}) ∪ {A ′}

A1,A2 ∈ A A = A1 !A2
merge

A −→ (A \ {A1,A2}) ∪ {A}

L(P) ⊆ L(A) ∀s ∈ ϕpre.
∑|A|

i=1 s(κi(q
ac
i )) 6 s(β) correct

`β {ϕpre} P {ϕpost}

Figure 5.6: Overall abstract algorithm for implementing Theorem 5.5

present the algorithm and prove soundness, assuming a procedure for
well-labeling single traces; we will detail this last piece in Section 5.5. Then,
we compare our algorithm with two existing techniques: the union bound
logic aHL, and standard trace abstraction.

Algorithm Overview

Our algorithm maintains a set {Ai}i of well-labeled failure automata mod-
eling some of the program traces, and repeatedly finds traces τ ∈ L(P)

that are not in {Ai}i. If a trace can be well-labeled, it is converted into a
well-labeled automaton Ai proving that `β {ϕpre} τ {ϕpost} and added to
the current automaton set. Throughout, the algorithm may simplify or
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transform the automaton set by merging automata together and generaliz-
ing automata by adding new edges. The process terminates successfully
if the set of failure automata {Ai}i satisfies the conditions in Theorem 5.5.

The input to the algorithm is a program P, a pre- and post-condition
ϕpre and ϕpost, and a target failure probability β, a function over the input
variables of the program. The entire algorithm is presented in Figure 5.6
as a set of non-deterministic guarded rules. The algorithm preserves the
invariant that the set of automata A are well-labeled. We briefly consider
each rule in turn.

Initialization The rule init is the only rule with no premises and serves
as the initialization rule. Not surprisingly, the set of failure automata A is
initially empty.

Trace Sampling The rule trace picks a trace τ that is in the program P

but not covered by the set of automata A. It then uses the function label
to construct a well-labeled automaton Aτ implying that `β {ϕpre} τ {ϕpost}.
We will detail the label operation in Section 5.5; for now, we just note that
label may fail, in which case the rule trace does not fire and the algorithm
tries a different trace.

Generalizing Automata The rule generalize expands the languageL(A)

by adding new edges to an automaton A ∈ A. When the new edges form
loops, this rule can be seen as generalizing from automata modeling fi-
nite unrollings of looping statements to automata overapproximating
loops. The side-conditions ensure that this transformation preserves well-
labeledness.

Merging Automata The rule merge combines automata whose traces
are mutually exclusive, allowing us to take the maximum failure probability
instead of the sum. Intuitively, automata that begin with the same prefix of
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statements before making mutually exclusive assumptions—say, assume(b)
and assume(¬b)—can have their prefixes merged together if they have
equivalent labels. This operation can be seen as constructing an automaton
combining two branches of a conditional.

Concretely, the operator ! takes two automata,A1 andA2, and returns
a new automaton that accepts the union of the traces. We formalize ! and
its preconditions below:

Definition 5.7. We assume the two automata A1,A2 are of the form Ai =

〈Qi, δi, λi, κi〉 with the initial and final nodes qin
i ,qac

i . Suppose there is a prefix
of statements st1, . . . , stn such that

1. every path from qin
1 to qac

1 is of the form:

qin
1

st1−→ q1,1
st2−→ q1,2 . . .q1,n

assume(b)−−−−−→ q1,n+1 · · ·qac
1

2. every path from qin
2 to qac

2 is of the form:

qin
2

st1−→ q2,1
st2−→ q2,2 . . .q2,n

assume(¬b)−−−−−−→ q2,n+1 · · ·qac
2

3. each prefix node q ∈ {qin
1 ,q1,1, . . . ,q1,n} has equivalent labels (λ and κ) to its

corresponding node in {qin
2 ,q2,1, . . . ,q2,n}.

Then, A1 !A2 yields a failure automaton A = 〈Q, δ, λ, κ〉 with

1. Q = Q1 ∪ (Q2 \ {q
in
2 ,q2,1, . . . ,q2,n,qac

2 });

2. δ = δ1 ∪ δ2 ∪
{
qi

st−→ qac | qi
st−→ qac

2 ∈ δ2

}
, with all edges to/from undefined

nodes removed;

3. qin = qin
1 and qac = qac

1 ;

4. λ agrees with λ1 and λ2, except that λ(qac) = λ(qac
1 ) ∪ λ(qac

2 ); and

5. κ agrees with κ1 and κ2, except that κ(qac) = max(κ(qac
1 ), κ(qac

2 )).
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x ⇠ bern(0.5) [x]

x ⇠ bern(0.5) [¬x]

true

0

0

true

A1

A2

y 0

y 0

0.5 0.5 0.5

0.5 0.5 0.5

¬x

x

false false

false false

(a) Example for !’s condition (3)

x ⇠ bern(0.5)
in if th ac

[x] y ⇠ bern(p)

els y ⇠
ber

n(0
.5p)

[¬x]

true true ¬y

0 0 0

0

true

true

p

(b) Example demonstrating ! on ex1

Figure 5.7: Examples of merging automata

More advanced extensions of this operation are also possible—e.g., also merging
common post-fixes along with common prefixes—but we stick with this version
for concreteness.

If two automata are well-labeled and the merge rule applies, then the
resulting merged automaton is also well-labeled. It is, however, important
to note condition (3) in Definition 5.7, which states that the shared prefix
between the two automata must have the same labels on both automata. If
that condition is violated, the result may not be well-labeled, as illustrated
in the following example.

Example 5.8. Consider the two well-labeled single-trace automata A1 and A2

in Figure 5.7(a), which model a conditional statement and share the prefix x ∼

Bern(0.5). The annotations prove that both traces satisfy `0.5 {true}Ai {y > 0}.
The operation ! does not apply here, since the automata disagree on the label of
the second node. However, suppose that we apply ! nonetheless. This results
in a final node with failure probability max(0.5, 0.5) = 0.5. But this is not
sound, since the probability of failing to achieve y > 0 is 1 when both traces are
considered together, since both traces set y to 0.

We also give an example of a sound application of merge.

Example 5.9. Consider the two well-labeled automata τ1 and τ2 from Figure 5.3
in Section 5.1. They satisfy the conditions for !. Figure 5.7(b) shows the result
of applying ! to these two automata. Notice that the accepting node, denoted ac,
has a label κ(ac) = max(p, 0.5p), which is equal to p.
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Lemma 5.10. If A1,A2 are well-labeled and satisfy the ! conditions, then A =

A1 !A2 is well-labeled.

Termination Finally, the rule correct gives the termination condition for
the algorithm, corresponding to the conditions from Theorem 5.5. Notice
that precondition and postcondition inclusion hold by construction, since
they were ensured by the labeling function label when the first trace in
each automaton was added to the automaton set by rule trace.

Theoretical Properties

Soundness As expected, the algorithm is sound. The proof is given in
Appendix C.2.

Theorem 5.11 (Soundness). If correct applies, then `β {ϕpre} P {ϕpost} is
valid.

(In)completeness Our approach is incomplete, primarily from the appli-
cation of the union bound, which, in some programs, does not allow us to
prove the tightest possible failure probabilities. As an example, consider

`0.75 {true} x ∼ Bern(0.5);y ∼ Bern(0.5) {x∧ y}

Any well-labeled automaton will upper bound the failure probability by
1, since we have no means of assuming independent sampling in both
statements. This example can be handled by coalescing the two sampling
statements into a single statement; however, the general issue arises in
loops, too.

Nevertheless, we can compare the expressivity of our approach with
two existing techniques: the union bound logic (Barthe et al., 2016c) and
trace abstraction (Heizmann et al., 2009, 2013).
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Union Bound Logic The union bound logic (Barthe et al., 2016c) is an
extension of Hoare logic with failure probabilities, where Hoare triples
are analogous to our annotations `β {ϕpre} P {ϕpost}. Our notion of well-
labeled automata can capture proofs in the union bound logic with the
exception of a few points, and our algorithm can recover a precise class
of well-labeled automata. We formalize this correspondence and prove a
completeness result in Appendix C.5.

Trace Abstraction Our technique generalizes trace abstraction for non-
probabilistic, single-procedure programs (Heizmann et al., 2009, 2013).
When given a non-probabilistic program P and Hoare triple {ϕpre} P {ϕpost},
we can construct trace-abstraction proofs by simply setting the failure
probability upper bound to 0 in the specification. Consequently, the failure
probability labels of nodes of all automata in A must be 0 for the proof
to hold. In this setting, the state labels (λ) are overapproximations of
reachable states at a specific node, corresponding to the annotations of
Floyd–Hoare automata defined by Heizmann et al. (2013).

5.5 Labeling Individual Traces

In the algorithm presented in Figure 5.6, the key subroutine is the label
operation for rule trace. Recall that given a single trace τ, pre- and post-
conditions ϕpre and ϕpost, and failure probability β, label attempts to con-
struct a well-labeled automaton Aτ for τ proving `β {ϕpre} τ {ϕpost}. We
now show how to reduce this task to a constraint-solving problem. Our ap-
proach is inspired by interpolation-based verification McMillan (2006), where
the semantics of τ are encoded as a formula in first-order logic to check if
it can falsify a Hoare triple. If the trace does not falsify the triple, Craig
interpolants are computed along the trace forming a Hoare-style anno-
tation. However, our setting is richer: we need to (i) handle traces with
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probabilistic semantics and (ii) construct two kinds of annotations—sets
of states and failure probability expressions. We demonstrate how to re-
duce this problem to Craig interpolation over a first-order theory, thus
eliminating probabilistic reasoning. We summarize our approach below:

1. Axiomatizing Distributions: We show how to encode `β {ϕpre} τ {ϕpost}

as a logical formula. The key challenge is in encoding semantics of sam-
pling statements. We address this challenge by observing that we can
encode sampling statements by introducing appropriate logical axioms
about the distributions. This results in a constraint-based synthesis problem
of the form ∃f.∀X.ϕ, where discovering a function f amounts to finding
an appropriate axiom for each sampling statement in order to establish
correctness of the trace.

2. Craig Interpolation: Once we have solved the synthesis problem by find-
ing a solution for f, we are left with a valid logical formula of the form
∀X.ϕ, which we can use to compute interpolants using standard tech-
niques. We demonstrate that these interpolants can be converted to a
well-labeling of Aτ.

Proofs via Distribution Axiomatization

We now describe how we can check validity of the specification

`β {ϕpre} st1; · · · ; stn {ϕpost}

Our approach is analogous to logical encodings of program paths in verifi-
cation of non-probabilistic programs; there, each statement sti is encoded
as a formula ϕsti in some appropriate first-order theory, e.g., the theories
of linear arithmetic or arrays. Novel to our setting, we use distribution ax-
ioms to approximate the semantics of sampling statements in a first-order
theory.
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Assumption ϕax Upperbound eub Parameters

Bernoulli: v ∼ Bern(v ′)

(f(V in) = 1 ∧ v)∨ (f(V in) = 2 ∧ ¬v)
v ′ if f(V in) = 1
1 − v ′ if f(V in) = 2
0 otherwise

f(V in) ∈ {1, 2, 3}

Uniform: v ∼ Unif(v ′)
v ∈ f(V in)

∣∣f(V in)
∣∣ / |v ′| f(V in) ⊆ v ′

Laplace: v ∼ Lap (v1, v2)

|v− v1| > v2 log
(

1
f(V in)

)
f(V in) f(V in) ∈ (0, 1]

Exponential: v ∼ Exp(v1, v2)

v < v1 ∨ v− v1 > v2 log
(

2
f(V in)

)
f(V in) f(V in) ∈ (0, 1]

Table 5.2: Example families of distribution axioms (v is always free in the
distribution expression)

Logical Theory We assume that deterministic program expressions cor-
respond to a first-order theory, like linear arithmetic. Given a formula ϕ,
a modelM of ϕ, denotedM |= ϕ, is a valuation of its free variables fv(ϕ)
satisfying the formula—e.g., M |= x + y > 0 where M = {x 7→ 0,y 7→ 1}.
We useM(ϕ) to denoteϕwith all free variables replaced by their interpre-
tation inM. A formula ϕ is satisfiable if there existsM such thatM |= ϕ; a
formula is valid ifM |= ϕ for all modelsM.

Distribution Axioms Given a sampling statement v ∼ d, an axiom is of
the form

Prv∼d [ϕ
ax] 6 eub

where eub is a [0,1]-valued expression over V and ϕax is a formula over
V . The axiom must be true for all possible valuations of the program
variables V \ {v}. We will use the axioms as follows: When encoding the
effect of a sampling statement v ∼ d, we can assume that ¬ϕax is true, with
a failure probability of at most eub. This allows us to sidestep probabilistic
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reasoning and encode program semantics in our first-order theory.
Since axioms are approximations of primitive distributions, there are

many possible axioms for any given distribution. In some cases, axioms
may be parameterized, e.g., by the failure probability. We call parameter-
ized axioms axiom families; Table 5.2 collects example axiom families for
the distributions in Section 5.2.

Definition 5.12 (Laplace Axiom Family). Recall that the (discrete) Laplace
distribution expression Lap (v1, v2) is parameterized by two parameters, the mean
v1 ∈ Z and the scale v2 ∈ R. Sampling from Lap (v1, v2) returns an integer
v with probability proportional to exp(− |v− v1| /v2). The Laplace distribution
supports the following family of axioms, parameterized by a (0, 1]-valued func-
tion f:

Prv∼Lap(v1,v2)

[
|v− v2| >

1
v1

log
(

1
f(V in)

)]
6 f(V in)

Different instantiations of f yield different axioms.

The exponential distribution’s axiom family is similar; note Exp(v1, v2)

has zero probability of returning elements smaller than v1, and this infor-
mation is incorporated into the axiom. The Bernoulli distribution’s family
is parameterized by a function f(V in) which decides whether to assume
v is true, false or treat it non-deterministically. The uniform distribution’s
axiom family is parameterized by a function f(V in) returning a subset of
the set defined by v ′.

Example 5.13. Recall trace τ2 (from program ex2) in Section 5.1 and Figure 5.4,
which contains the statement a[i] ∼ Lap (q[i], 1/ε). To prove correctness of
τ2, we instantiated the Laplace axiom family with f(V in) = p where p ∈ V in,
yielding the axiom

Pra[i]∼Lap(q[i],1/ε)

[
|a[i] − q[i]| >

1
ε

log
(

1
p

)]
6 p
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enc(i, v← e) := v = e ∧ωi = ωi−1 ∧ hi = hi−1

enc(i, assume(b)) := ωi = ωi−1 ∧ hi = (hi−1 ∨ ¬b)
enc(i, v ∼ d) := ωi = ωi−1 + eub ∧ hi = (hi−1 ∨ϕ

ax)

given: Prv∼d [ϕ
ax] 6 eub

Figure 5.8: Logical encoding of statement semantics

Theorem 5.14. Each axiom in Table 5.2 is sound: given any input state s and
well-typed distribution expression d, the probability that ϕax holds in s(d) is at
most s(eub).

The proof of Theorem 5.14 is given in Appendix C.2.

Logical Encoding

We now present our encoding for checking `β {ϕpre} τ {ϕpost}. First, with-
out loss of generality, we assume that τ is in static single assignment (SSA)
form; this ensures that variables are not assigned to more than once, sim-
plifying our encoding. We also assume that ϕpre and ϕpost are logical for-
mulas over program variables. Our encoding explicitly maintains failure
probability using a special set of real-valued variablesωi, which encode
failure probability after statement sti along τ. In order to encode failure
probability on unsatisfiable subtraces, we also use a special set of Boolean
variables hi to track if an execution was blocked by an assume statement.

The function enc, defined in Figure 5.8, is used to encode assignment,
assume, and sampling statements; it maintains the variables ωi,hi and
axiomatizes sampling statements using the aforementioned distribution
axioms.

Consider, for instance, the encoding for assignment statements: it con-
strains v to e, while maintaining the same failure probability and blocked
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status,ωi and hi. Intuitively, the semantics of assignment statements is
precisely captured by our logical encoding, so assignment statements do
not increase the probability of failure. In contrast, the probability of failure
increases when an axiom is applied for a sampling statement. Concretely,
if the axiom family Prv∼d [ϕ

ax] 6 eub is applied, we assume that ¬ϕax is true
while accumulating probability of failure eub, as encoded in the constraint
ωi = ωi−1 + eub.

The following theorem formalizes the encoding of `β {ϕpre} τ {ϕpost}

and states its correctness The proof is in Appendix C.2.

Theorem 5.15 (Soundness of Logical Encoding). The specification

`β {ϕpre} st1, . . . , stn {ϕpost}

is valid if the following formula is satisfiable:

∀V ,ωi,hi.

(
ϕpre ∧ω0 = 0 ∧ h0 = false ∧

n∧
i=1

enc(i, sti)

)
⇒ ϕp (5.2)

where
ϕp := (ωn 6 β∧ (¬hn ⇒ ϕpost))

Observe that in the above encoding the only free symbols are the
uninterpreted functions f1, . . . , fm introduced by the axiom families used
in the encoding of sampling statements. Thus, checking satisfiability
involves synthesizing interpretations for f1, . . . , fm. (Equivalently, we can
think of f1, . . . , fm as existentially quantified so that we check validity of
∃f1, . . . , fm∀V . . . .)

Example 5.16. Recall the trace τ1 from Section 5.1 and Figure 5.3 (program
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ex1), where we proved:

`p {true} x ∼ Bern(0.5)︸ ︷︷ ︸
st1

; assume(x)︸ ︷︷ ︸
st2

; y ∼ Bern(p)︸ ︷︷ ︸
st3

{¬y}

Using the encoding in Theorem 5.15, we get the following formula:

∀x,y,p,ωi,hi.

(
ω0 = 0 ∧ h0 = false ∧

3∧
i=1

enc(i, sti)

)
⇒ ϕp

where
ϕp := (ω3 6 p∧ (¬h3 ⇒ ¬y))

To illustrate, enc(1, x ∼ Bern(0.5)) is the following constraint, using the axiom
family in Table 5.2:

ω1 = ω0 +


0.5 if fx(p) = 1
0.5 if fx(p) = 2
0 otherwise

︸ ︷︷ ︸
eub

∧ (h1 = h0 ∨ ¬ϕax)

where
¬ϕax := (fx(p) = 1 ∧ x)∨ (fx(p) = 2 ∧ ¬x)

The proof in Section 5.1 used the interpretation fx(p) = 3, allowing x to take
any value.

From Synthesis to Craig Interpolation

Now that we have defined our logical constraints, we can apply Craig in-
terpolation on the above encoding in Theorem 5.15 to construct the labeling
functions, λ and κ, for an automaton accepting τ.

The standard notion of sequence interpolants (McMillan, 2006) general-
izes Craig interpolants between two formulas to a sequence of unsatisfiable
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formulas in first-order logic.

Definition 5.17 (Sequence Interpolants). Let
∧n
i=1ϕi be unsatisfiable. There

exists a sequence of formulas ψ1, . . . ,ψn such that:

1. ϕ1 ⇒ ψ1 and ψn ⇒ false are valid,

2. for all i ∈ (1,n), ψi ∧ϕi+1 ⇒ ψi+1 is valid, and

3. fv(ψi) ⊆ fv(ϕ1, . . . ,ϕi) ∩ fv(ϕi+1, . . . ,ϕn).

Note that sequence interpolation is equivalent to solving a form of recursion-free
Horn clauses (Rümmer et al., 2013); we use an interpolation-based presentation
to reduce notational overhead.

Labeling Automata via Interpolation

Suppose that we have discovered interpretations for f1, . . . , fm that satisfy
Equation (C.1) from Theorem 5.15. This implies that the following formula,
which is Equation (C.1) after negating it and instantiating f1, . . . , fm with
their interpretations, is unsatisfiable:(

ϕpre ∧ω0 = 0 ∧

n∧
i=1

enc(i, sti)

)
∧ ¬(ωn 6 β∧ (¬hn ⇒ ϕpost))

It follows that we can construct a sequence of Craig interpolants for the fol-
lowing problem:

ϕpre ∧ω0 = 0︸ ︷︷ ︸
ϕ0

∧

n∧
i=1

enc(i, sti)︸ ︷︷ ︸
ϕi

∧¬(ωn 6 β∧ (¬hn ⇒ ϕpost))︸ ︷︷ ︸
ϕn+1

Every interpolant ψi encodes the set of reachable states and the failure
probability after executing the first i program statements beginning from
a state in ϕpre. The free-variable condition for interpolants implies that the
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only free variables inψi are hi,ωi, and live program variables after the ith
statement. The challenge is that interpolants describe both the program
state invariants and the failure probability invariants, corresponding to the
λ and κ needed to label the failure automaton. Fortunately, these labels can
be extracted from the interpolants. The following theorem formalizes the
transformation and states its correctness. The proof is in Appendix C.3.

Theorem 5.18 (Well-Labelings from Interpolants). Let {ψi}i be the inter-
polants computed as shown above. LetAτ = 〈Q, δ, λ, κ〉 be the failure automaton
that accepts only the trace τ = st1, . . . , stn, i.e.,

δ =
{
qin st1−→ q1,q1

st2−→ q2, . . .qn−1
stn−→ qac

}
Set the labeling functions as follows:

1. λ(qin) := ϕpre and κ(qin) := 0.

2. λ(qi) := ∃ωi.ψi[hi 7→ false] and λ(qac) := ∃ωn.ψn[hn 7→ false].

3. κ(qi) := f(Vdet), where f(Vdet) is the function that returns, for any valuation of
Vdet, the largest value ofωi that satisfies ∃V \ Vdet.∃hi.ψi. For κ(qac), we use
∃V \ V in.∃hn.ψn.

Then, Aτ is well-labeled and implies `β {ϕpre} τ {ϕpost}.

Notice that for λ we set hi to be false, since we are only interested in
states that pass assume statements (reachable states). We existentially
quantifyωi, as it is not a program variable. Also notice the technicality in
constructing κ; this arises because the interpolant is a relation over values
ofωi and Vdet, while the label of κ(qi) is technically a function from Vdet

to [0,1]. In practice, we need not construct the function f; we can perform
all needed checks using relations.
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5.6 Implementation and Case Studies

We have implemented our approach atop the Z3 SMT solver (de Moura
and Bjørner, 2008). We encode statements using the following first-order
theories: linear arithmetic, uninterpreted functions, and arrays. Below, we
describe our implementation; we refer to Appendix C.6 for further details.

Algorithmic Strategy Our implementation is a determinization of the
algorithm presented in Section 5.4. To ensure that we get tight upper
bounds on failure probability, our implementation aggressively tries to ap-
ply the merge rule—recall that the merge rule allows us take the maximum
failure probability across two automata, instead of the sum. Specifically,
we modify the rule trace to return a set of traces τ1, . . . , τn ∈ L(P)∩L(A).
Then, we attempt to simultaneously label all traces with the same inter-
polants at nodes pertaining to the same control location. To ensure that we
compute similar interpolants across traces, we use the same distribution
axiom for the same sampling instruction in all traces it appears in. Finally,
we attempt to apply the rule generalize to create cycles in the resulting
automaton.

Discovering Axioms Given a formula of the form ∃f. ∀X.ϕ, we check its
validity using a propose-and-check loop: (i) we propose an interpretation
of f and then (ii) check if ∀X.ϕ is valid with that interpretation using the
SMT solver (more on this below). The first step proposes interpretations of
f of increasing size, e.g., for a unary function f(x), it would try 0, 1, x, x+ 1,
etc. As we shall see, even for complex randomized algorithms from the
literature, the required axioms are syntactically simple, so this simple
strategy works rather well.

Checking Validity The case studies to follow make heavy use of non-
linear arithmetic (e.g., xy/z+u > 0) and transcendental functions (namely,
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log). Non-linear theories are generally undecidable. To work around
this fact, we implement an incomplete formula validity checker using
an eager version of the theorem enumeration technique recently proposed
by Srikanth et al. (2017). First, we treat non-linear operations as unin-
terpreted functions, thus overapproximating their semantics. Second,
we strengthen formulas by instantiating theorems about those non-linear
operations. For instance, the following theorem relates division and mul-
tiplication: ∀x,y.y > 0 ⇒ xy/y = x. We then instantiate x and y with
terms over variables in the formula. Since there are infinitely many possi-
ble instantiations of x and y, we restrict instantiations to terms of size 1,
i.e., variables/constants.

Our implementation uses a fixed set of theorems about multiplication,
division, and logarithms. These are instantiated for every given formula,
typically resulting in ∼1000 additional conjuncts.

Interpolation Technique Given the richness of the theories we use, we
found that existing proof-based interpolation techniques either do not sup-
port the theories we require (e.g., the MathSAT solver (Cimatti et al., 2013))
or fail to find generalizable interpolants, e.g., cannot discover quantified
interpolants (e.g., Z3). As such, we implement a template-guided interpola-
tion technique (Albarghouthi and McMillan, 2013; Rummer and Subotic,
2013), where we force interpolants to follow syntactic forms that appear
in the program. Specifically, for every Boolean predicate ϕ appearing in
the program, the specification, or the axioms, we create a template ϕt by
replacing its variables with placeholders, denoted  i. For instance, given
x > y, we generate the template  1 >  2.

Given a set of templates, our interpolation technique synthesizes a con-
junction of instantiations of those templates, where each wildcard is re-
placed by a well-typed term over formula variables. We bound the size of
terms instantiating wildcards (e.g., to size 1), and proceed by finding the
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smallest possible interpolant in terms of number of conjuncts. If no such
interpolant can be found, we increase the bound on term size and repeat.

Case Studies in Privacy-Preserving Algorithms

Differential privacy (Dwork et al., 2006) is a strong probabilistic property
modeling statistical data privacy that adds random noise at key points
in the computation. Sophisticated differentially private algorithms are
known for a wide variety of common data analyses, and differential privacy
is starting to see deployments in both industry (Erlingsson et al., 2014;
Johnson et al., 2018a) and government (Abowd and Schmutte, 2017; Haney
et al., 2017).

Intuitively, more random noise yields stronger privacy guarantees at
the expense of accuracy—the noisy answers may be too far from the exact
answers to be of any practical use. Therefore, the designer of a differentially
private algorithm aims to maximize accuracy of the computed results
while achieving some target level of privacy. We now consider a number
of algorithms from the differential privacy literature and demonstrate our
technique’s ability to automatically prove their accuracy guarantees. The
algorithms and their specifications are shown in Figures 5.9 to 5.14 and
described below; Table 5.3 provides runtime and other statistics, which
we discuss later in this section.

Randomized Response (randResp)

One of the oldest randomized schemes for protecting privacy is randomized
response, proposed by Warner (1965) decades before the formulation of
differential privacy. In the typical setting, an individual has a single bit (0
or 1) as their private data, representing e.g. the presence of some disease or
genetic marker. Under randomized response, the individual flips two fair
coins: if the first result is heads, the individual reports their bit honestly,
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`0.25 {true}
let randResp priv = do {

r ~ Unif({00,01,10,11})
if (fst r == 1) then

ans = priv
else

ans = snd r
return ans

} {ans ⇐⇒ priv}

Figure 5.9: Randomized Response (randResp) algorithm

Algorithm Axiom(s) synthesized PA TI Time

randResp priv ⇐⇒ snd(r) 162 0 2
noisySum |Q|/p 5 5496 98
noisyMax |Q|/p 4 1768 33
expMech |R|/p 3 1768 27
aboveT 2/p and 2 |Q|/p 22 752 23
sparseVec 3/p, 3 |Q| /p, and 3/p 941 1330 97

Table 5.3: Results on private algs. PA: # of proposed axioms; TI: # of
theorem instantiations; time is in sec.

otherwise they ignore their private bit and report the result of the second
flip. In this way, randomized response guarantees a degree of privacy
by introducing plausible deniability—an individual’s reported bit could
have been the result of chance. At the same time, randomized response
guarantees a weak notion of accuracy, as the output is biased towards the
true private bit with probability 3/4.

We encode randomized response as in Figure 5.9 and prove the ac-
curacy guarantee. In the code, priv is the individual’s private bit. The
program draws two bits uniformly and then decides what to return; fst
and snd extract the results of the first and second bits, respectively. The
accuracy guarantee states that the returned answer is equal to the true
private bit, except with probability at most 1/4. Our implementation syn-
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`p {ε > 0}
let noisySum Q d ε = do {

s, i = 0, 1
while (i < |Q|) do {

q = Q[i](d)
a[i] ~ Lap(q, 1/ε)
s = s + a[i]
i = i + 1

}
return s

} {|s− s∗| 6 |Q| /ε · log(|Q| /p)}

Figure 5.10: Noisy Sum (noisySum) algorithm; s∗ :=
∑|Q|

j=1Q[j](d)

thesizes the axiom priv ⇐⇒ snd(r); this ensures that the second bit has
the same value as priv, so if the first bit is 0 and the else branch is taken,
the algorithm is forced to return the right result, with a failure probability
of 1/4.

Noisy Sum (noisySum)

Our next algorithm computes the sum of a set of numeric queries, adding
noise to the answer of each query in order to ensure differential privacy.
This is a simplified version of the private counters by Chan et al. (2011)
and Dwork et al. (2010), which are used to publish aggregate statistics
privately, e.g., total number of website visitors.

The noisySum program (Figure 5.10) takes three inputs: a set Q of
integer-valued queries (encoded as an integer array where index i holds
the result ofQi(d)), a database d holding the private data, and a parameter
ε ∈ R representing the desired level of privacy. The program populates
an integer array a with answers to each query, with noise drawn from the
Laplace distribution with scale controlled by ε; smaller ε is more private,
but requires more noise. Finally, the output is the sum of all noisy answers.

The accuracy guarantee bounds how far the noisy sum deviates from
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`p {ε > 0}
let noisyMax Q d ε = do {

b, max, i = ⊥, ⊥, 1
while (i <= Q) do {

q = Q[i](d)
a[i] ~ Lap(q, 2/ε)
if (a[i] > max || b = ⊥) then

b = i
max = a_i

i = i + 1
}
return best

} {∀j ∈ [1, |Q|].Q[b](d) > Q[j](d) − 4/ε log(|Q| /p)}

Figure 5.11: Report Noisy Max (noisyMax) algorithm

the true sum with failure probability p, where p is a parameter. Our
implementation synthesizes an axiom for each Laplace sampling, setting
the failure probability to be p/|Q| each time. Therefore, at step i,

|ai −Qi(d)| 6
1
ε

log(|Q| /p)

Since there are |Q| iterations, after the loop exits we have∣∣∣∣∣∣s−
|Q|∑
j

Qj(d)

∣∣∣∣∣∣ 6 |Q|

ε
log(|Q| /p)

with a failure probability of at most |Q| · p
|Q|

= p.

Report Noisy Max (noisyMax) and Exponential Mechanism (expMech)

Our next pair of algorithms select an approximate maximum element from
a set of private data.

In Report Noisy Max (Dwork and Roth, 2014), the algorithm is pre-
sented with a set Q of integer queries, a private database d, and a privacy
level ε (Figure 5.11). The algorithm then evaluates each query on d and
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`p {ε > 0}
let expMech R u D ε = do {

b, max = ⊥, 0
for (r in R) do {

util = u(r, d)
nu = Exp(util, 2/ε)
if (nu > max || b = ⊥) then

b, max = r, nu
}
return b

} {∀j ∈ R. u(b,d) > u(j,d) − 2/ε · log(2 |R| /p)}

Figure 5.12: Discrete Exponential mechanism (expMech)

adds Laplace random noise to protect privacy. Finally, the index of the
query with the largest noisy value is returned. For example, if each query
counts the number of patients with a certain disease, then Report Noisy
Max will report a disease that may not be true most prevalent disease, but
whose count is not too far from the true maximum count.

The postcondition states that the answer of the returned queryQb is not
too far below the answer of the actual maximum query. To achieve failure
probability p, our implementation synthesizes an axiom for the Laplace
sampling statement with failure probability p/|Q|. Since the loop executes
|Q| times, we establish that the postcondition holds with probability p. To
do so, the interpolation engine discovers a number of key facts; we outline
two of them:

∀j ∈ [1, i). |aj −Qj(d)| 6
2
ε

log |Q|

p
and ∀j ∈ [1, i).ab > aj

The first formula specifies that, for every element of j of a, its distance from
the corresponding valuation ofQj(d) is bounded above by 2/ε log |Q|/p—
this follows directly from the choice of distribution axiom. The second
formula states that the best element is indeed larger than all previously
seen ones. Upon loop exit, these facts, along with others, are sufficient to
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imply the postcondition. Notice that the 2/ε log |Q|/p in the first formula
weakens to 4/ε log |Q|/p in the postcondition. This is due to the two-sided
error introduced by the absolute value in the Laplace axiom. The proof
computed for noisyMax is presented in detail in Appendix C.6.

The algorithm expMech is a discrete version of the seminal Exponential
mechanism (McSherry and Talwar, 2007), a fundamental algorithm in
differential privacy (Figure 5.12). This algorithm is used to achieve dif-
ferentially privacy in non-numerical queries, as well as a mechanism for
achieving certain notions of fairness in decision-making algorithms(Dwork
et al., 2012). expMech takes a set R of possible output elements, a utility
function u mapping each element of R and private database to a numeric
score, a private database d, and privacy parameter ε. The algorithm aims
to return an element of R that has large utility on the given database.
expMech differs from noisyMax through the use of the exponential distri-
bution; because the exponential distribution never produces results lower
than the shift, the accuracy bound for the expMech is better. The distance
to the true maximum is at most 2

ε
log(2|R|/p) instead of 4

ε
log(|Q|/p), with

failure probability at most p. To prove this, our implementation synthe-
sizes an axiom analogous to that used for noisyMax.

Above Threshold (aboveT) and Sparse Vector Mechanism (sparseVec)

A useful differential privacy primitive is to return the first query in a
list with a numeric answer (approximately) above some given threshold,
ignoring queries with small answers. Our final two privacy examples
do just this. The Above Threshold algorithm (Dwork and Roth, 2014)
takes a list Q of queries, a private database d, a numeric threshold T , and
the target privacy level ε (Figure 5.13). First, the program computes a
noisy threshold t by adding noise to the true threshold T . The program
loops through the queries, comparing the noisy answer of each query
to the noisy threshold. If the noisy answer is above the noisy threshold,
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`p {ε > 0}
let aboveT Q d T ε = do {

i, done = 1, false
t ~ Lap(T, 1/ε)
while (i <= |Q| && !done) do {

q = Q[i](d)
a ~ Lap(q, 2/ε)
if (a > t) then

done = true
i = i + 1

}
ans = done ? i - 1 : ⊥
return ans

} {ans 6= ⊥ ⇒ ϕ>)∧ (ans = ⊥ ⇒ ϕ⊥)}

ϕ> :=

{
∀j ∈ [1, ans).Q[j](d) 6 T + 2/ε · log(2 |Q| /p) + 1/ε · log(2/p)
Q[ans](d) > T − 2/ε · log(2 |Q| /p) − 1/ε · log(2/p)

ϕ⊥ := ∀j ∈ [1, |Q|].Q[j](d) 6 T + 2/ε · log(2 |Q| /p) + 1/ε log(2/p)

Figure 5.13: Above Threshold (aboveT) algorithm

the program sets the flag done and exits the loop. Finally, the algorithm
returns the index of the approximately above threshold query, or a default
value ⊥ if no such query was found.

The accuracy guarantee requires some care. There are two cases: the
returned value is either a query index, or ⊥. In the first case, qans should
have true value not too far below the exact threshold T , and all prior queries
should have true value not too far above T . In the second case, no query
was found to be above threshold after adding noise, so no true answer
should be too far above T . To prove this property, we synthesize axioms
for the Laplace sampling instructions with different failure probabilities:
p
2 for the threshold sampling, and p

2|Q|
for each loop sampling. There is

one threshold sampling and at most |Q| loop iterations, so the total failure
probability is at most p2 + |Q| · p

2|Q|
= p.

A slightly more involved variant of this algorithm, called Numeric
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`p {ε > 0}
let sparseVec Q d T ε = do {

i, done = 1, false
t ~ Lap(T, 1/ε)
while (i <= |Q| && !done) do {

q = Q[i](d)
a ~ Lap(q, 2/ε)
if (a > t) then

noisy ~ Lap(q, 1/ε)
done = true

i = i + 1
}
ans = done ? (i - 1, noisy) : ⊥

} {(ans 6= ⊥ ⇒ ϕ ′>)∧ (ans = ⊥ ⇒ ϕ ′⊥)}

Figure 5.14: Sparse Vector (sparseVec) algorithm; the definitions of ϕ ′> and
ϕ ′⊥ mirror that of ϕ> and ϕ⊥ from Figure 5.13, and so are elided here

Sparse Vector (Dwork and Roth, 2014), also returns a noisy answer to the
above threshold query along with the query’s index (Figure 5.14). Again,
the accuracy property describes the two cases—above threshold query
found, and no above threshold queries. In both cases, the noisy query
answer should be close to the true answer. The proof proceeds much like
in the simpler variant, adjusting the failure probabilities when applying
axioms in order to take the additional noisy answer sampling into account.

Discussion of Results

Table 5.3 summarizes the results of applying our implementation to the
above algorithms. The table lists the synthesized axiom per sampling
statement—recall that our implementation strategy forces different in-
stances of a sampling statement to use the same axiom. Additionally, we
list the number of proposed and checked axioms (PA), the largest number
of theorem instantiations for dealing with non-linear arithmetic (TI), and
the total time in seconds.

Consider the aboveT algorithm. The implementation attempts 22 differ-
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ent pairs (because there are two sampling statements) of axioms. Table 5.3
lists the synthesized interpretation of the function f(V in) for the first and
second sampling statements. The implementation discovers the axiom
that assigns a failure probability p/2 for the first sampling statement and
p/(2|Q|) for the second sampling statement. Proving accuracy of aboveT
takes 23 seconds and 752 theorems are instantiated to interpret non-linear
arithmetic. Notice that noisySum takes the longest amount of time, even
though it only attempts 5 axioms. This is due to the large number (∼5500)
of theorem instantiations. For sparseVec, the implementation proposes 941
axioms before discovering the shown axioms.

To the best of our knowledge, no existing tools can automatically rea-
son about the algorithms and accuracy properties we have discussed
here. The algorithms we considered are small yet sophisticated. As the
number of sampling statements increases, the space of possible axioms
grows combinatorially, impacting synthesis performance. As research into
constraint-based program synthesis progresses, our approach can directly
benefit from these developments.

Case Study in Unreliable Hardware

To demonstrate our approach’s versatility, we consider another possible
application: analyzing programs executing on approximate hardware,
which is unreliable but efficient.

We use the program searchRef from the Rely system by Carbin et al.
(2013), shown in Figure 5.15, which implements a pixel-block search algo-
rithm from x264 video encoders. The program receives a constant number
of pixel blocks (nblocks = 20) of size 16× 16 (height× width).

This program is expected to provide adequate video encoding despite
potential hardware failures. Rely’s programming model exposes unreli-
able arithmetic operations, denoted with a U (e.g. x +U y), which may
fail with small probability (say, 10−7). Reading from variables typed as
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let nblocks, height, width = 20, 16, 16 in
let searchRef pblocks, cblock =

let reliable = i, j, k in
let unreliable = minssd, minblock, ssd, t, t1, t2 in do {

i = 0
while (i < nblocks) do {

ssd, j = 0, 0
while (j < height) do {

k = 0
while (k < width) do {

t1, t2, = pblocks[i, j], cblock[j]
t = t1 −U t2
ssd = ssd +U (t×U t)
k = k + 1

}
j = j + 1

}
if (ssd<U minssd) then

minssd, minblock = ssd, i
i = i + 1

}
return minblock

}

Figure 5.15: Reliable computing example (Carbin et al., 2013)

unreliable may also fail with a small probability. Rely assumes loops over
unreliable data have a constant bound on the number of iterations, so
these loops can be unrolled.

Our goal is to prove the probability of a reliable execution is at least
0.99, where reliability implies no failures along the execution (note that
Rely multiplies this probability by the reliability of the inputs (pblocks,
cblock)—this does not impact the analysis). To do so, we analyze a version
of the program instrumented with a Boolean flag unrel, which is initialized
to false. We model each unreliable operation by adding a sampling from
the Bernoulli distribution to determine whether the operation fails. For
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instance, a read y← x from an unreliable x is transformed into

y← x; unrel← unrel ∨ Bern(10−7)

We then use to prove `0.01 {true} searchRef {unrel = false}.
Unlike Rely, we do not assume independent failures. Our analysis thus

gives a more conservative estimate of failure probability, but, as a benefit,
retains soundness even if failures are correlated. Nevertheless, we are
able to prove that the program is reliable with probability > 0.992832,
compared to the 0.994885 computed by Rely. Moreover, since our approach
is symbolic, we can prove a symbolic reliability bound as a function of the
number of blocks and their size. This allows us to ask: how many blocks
can we use, and how large, and still be reliable? We automatically establish
the parameterized failure probability 1.4 · 10−6 · nblocks · height · width,
describing how program parameters affect reliability. For instance, we can
increase the number of blocks to 25 and still maintain > 0.99 reliability, or
quadruple the size of each block to 322 pixels and get > .97 reliability. In
both settings, our approach completes the proof in less than 2 seconds.

5.7 Related Work

Interpolation & Trace Abstraction In software verification, interpolants
were first used for constructing predicate abstract domains in counterexample-
guided abstraction refinement (CEGAR) (Henzinger et al., 2004). McMillan’s
work on lazy abstraction with interpolants (McMillan, 2006) used proofs of
correctness of program traces to directly construct Hoare-style annotations.
By unrolling the program’s CFG into a tree and adding annotations, he
showed how to generalize a tree of paths into an automaton by adding
back edges, proving the correctness of infinitely many traces.

Our approach is inspired by work by Heizmann et al. (2010, 2013, 2009),
which provided an insightful and general view of interpolation-based ver-
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ification through the lens of automata. Elegance aside, the automata view
better suits our probabilistic setting: in McMillan’s original formulation, a
program can be unrolled into a tree, as paths with common prefixes can
be combined. In our setting this combining is more subtle—our ! is a
restricted version. Further, the automata view allows us to maintain sets
of traces separately and sum up their probabilities of failure.

Deductive Probabilistic Verification Deductive verification techniques
for probabilistic programs include probabilistic Hoare logics (Rand and
Zdancewic, 2015; Barthe et al., 2018; den Hartog, 2002; Chadha et al.,
2007) and the lightweight probabilistic logic of Barthe et al. (2016c) our
technique is closely related to, just as the classical interpolation-based
techniques mirror Hoare-style proofs. Deductive techniques are highly
expressive, but the complex proofs typically must be constructed manually
or in an interactive setting. In contrast, our approach has the advantage of
automation.

Pre-Expectation Calculus The pre-expectation calculus and associated
predicate transformers (Kozen, 1985; Morgan et al., 1996) can prove proper-
ties of probabilistic programs, but have practical obstacles to full automa-
tion. Computing pre-expectations across sampling instructions yields
an integral over the distribution being sampled from. Complex distribu-
tions, like the infinite-support Laplace distribution, yield correspondingly
complex integrals that are difficult to reason about. Any automation of
the pre-expectation calculus will need to establish algebraic properties
about these mathematical expressions. Our use of distribution axioms
(Section 5.5) obviates the need to reason directly about integrals via a
reduction to synthesis.

Martingales Martingales—probabilistic analogues of loop invariants—
are used in automated tools to prove termination conditions (Chakarov
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and Sankaranarayanan, 2013; Chatterjee et al., 2016a,b; McIver et al., 2018)
and properties of expected values (Barthe et al., 2016a). Automated martin-
gale synthesis techniques are restricted to linear or polynomial invariants,
which alone are unable to prove the accuracy properties we are interested
in.

Probabilistic Model Checking Probabilistic model checking is perhaps
the most well-developed technique for automated reasoning about proba-
bilistic systems. Traditionally, it focused on temporal properties of Markov
Decision Processes (MDP)—surveys by Kwiatkowska et al. (2010) and Ka-
toen (2016) overview the current state of the art.

Our program model can be cast as an infinite-state MDP, with non-
determinism at program entry to pick an initial state. There have been a
number of abstraction-based techniques for reducing the size of large (or
infinite) MDP (Kattenbelt et al., 2009, 2010; Hermanns et al., 2008). To our
knowledge, existing works cannot handle the programs and properties
we consider here. The general limitation is the inability of existing model
checking techniques to handle distribution expressions—e.g., a Laplace
whose scale is a parameter—and failure probabilities that are expressions.
Probabilistic CEGAR (Hermanns et al., 2008) uses a guarded-command
language where probabilistic choice is a real-value determining the prob-
ability of executing each command. Other techniques limit distribution
expressions to finite distributions with constant parameters (Kattenbelt
et al., 2009).

Teige and Fränzle (2011) consider interpolation in stochastic Boolean
satisfiability (Littman et al., 2001), where formulas contain existential and
probabilistic quantifiers. The approach has been used for generalizing
bounded encodings of finite-state MDP, in an analogous fashion to the
original work on interpolation-based model checking (McMillan, 2003).
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Other Analyses Probabilistic abstract interpretation (Cousot and Mon-
erau, 2012) generalizes the abstract interpretation framework to a proba-
bilistic setting; other techniques can be cast in this framework (Monniaux,
2000, 2001, 2005; Claret et al., 2013). Recently, Wang et al. (2018) presented
PMAF, an elegant algebraic framework for constructing analyses of prob-
abilistic programs. The approach is rather general, accepting recursive
programs and supporting interprocedural analyses. Unlike PMAF, whose
results depend highly on the expressiveness of the chosen abstract domain,
our technique constructs abstractions on demand, à la interpolation-based
verification, at the risk of never generalizing. PMAF instantiations con-
sidered by Wang et al. (2018) cannot prove our target accuracy properties,
but alternative instantiations might achieve something similar.

Another line of work reduces probabilistic verification to a form of
counting (Albarghouthi, 2017; Chistikov et al., 2015; Belle et al., 2015;
Mardziel et al., 2011). To compute the probability that a formula is SAT,
these techniques count the number of satisfying assignments—or per-
form numerical volume estimation in the infinite-state case. While these
techniques can compute very precise—often exact—probabilities, they
target simpler program models. Specifically, programs have no inputs,
probability distribution are not parameterized, and loops are handled via
unrolling.

Our technique is related to works verifying relational probabilistic
properties, including differential privacy and uniformity (Albarghouthi
and Hsu, 2018b,a). These systems encode the space of coupling proofs as a
constraint-based synthesis problem. Our technique handles different prop-
erties, but shares the high-level design principle of reducing probabilistic
reasoning to logical reasoning.

Computer algebra and symbolic inference methods (e.g., (Gehr et al.,
2016; Cusumano-Towner et al., 2018; Narayanan et al., 2016)) have been
applied to probabilistic programs in different domains (e.g., (Gehr et al.,
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2018)). While these tools can automatically generate symbolic representa-
tions of output distributions, proving properties about these distributions
remains challenging. Modern implementations use a variety of custom
heuristics and reduction strategies to try to simplify complex algebraic
terms, a computationally-expensive task.
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6 exploiting symmetries in term algebras

Program synthesis techniques are powerful and useful tools. In this dis-
sertation alone, we have seen how effective program synthesis can be at
lowering the burden-of-knowledge for data access by generating useful
programs satisfying scalability and privacy constraints (Chapters 3 and 4);
even the proof technique in Chapter 5 is only made possible by the use of
program synthesis to generate distribution axioms.

While we frame synthesis as the enumeration of simple syntactic terms,
we often have more information about the function symbols than just their
input and output sorts: knowledge of their partial semantics can be en-
coded into equations over terms to describe properties such as commutativ-
ity, distributivity, or idempotence. Fundamentally, these properties relate
two candidate terms together—e.g., x+ y and y+ x via commutativity—
and form a semantic symmetry that can be exploited to limit the synthesis
search domain.

In this chapter, we present the synthesis modulo equations problem, and
explore how equivalence reduction uses equations to avoid exploring
redundant program terms. To conclude, we explore the implementation
and performance implications of several versions of equivalence reduction
as applied to bottom-up and top-down synthesis techniques. The contents
of this chapter are based on the work of Smith and Albarghouthi (2019a).

6.1 Introduction to Equivalence Reduction

Let us frame program synthesis as a teacher-learner model, where the
learner (the synthesizer) proposes a programp and the teacher (the verifier)
answers with yes/no, indicating whether p |= φ or not. Our goal is to make
the learner smarter: we want to reduce the number of questions the learner
needs to ask before arriving at the right answer.
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Consider the following string-manipulation programs:

let p_1 x = swap (lower x)
let p_2 x = upper x

where swap turns all uppercase characters lowercase (and vice versa), and
where upper and lower turn all characters uppercase or lowercase, respec-
tively. A smart learner would know that turning all characters lowercase
and then applying swap is the same as simply applying upper. Therefore,
the learner would only need to ask about one of the programs p_1 and p_2.
Formally, the learner is equipped with the following piece of information
connecting the three functions:

∀x. swap(lower(x)) = upper(x)

One also imagines a variety of other semantic knowledge that a learner
can leverage, such as properties of specific functions (e.g., idempotence) or
relational properties over combinations of functions (e.g., distributivity).
Such properties can be supplied by the developer of the synthesis domain,
or discovered automatically using tools like QuickSpec (Claessen et al.,
2010) or Bach (Smith et al., 2017).

Equivalence Reduction

Universally quantified formulas like the one above form equational speci-
fications: they define some (but not all) of the intended behaviors of the
function symbols, as well as relations between them. The equations par-
tition the space of programs into equivalence classes, where each equiv-
alence class contains all equationally equivalent programs. The learner
needs to detect when two programs are in the same equivalence class and
only ask the teacher about one representative per equivalence class. To do
so, we utilize the equations to define a normal form on programs, where
equivalent programs all simplify to the same normal form. By structuring
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Figure 6.1: Overview of synthesis with equivalence reduction

the learner to only consider programs in normal form, we ensure that no
redundant programs are explored, potentially creating drastic reductions
in the search space. We call this process program synthesis with equivalence
reduction.

By restricting the partial semantic information in the form of equations,
we can leverage standard completion algorithms, e.g. Knuth-Bendix com-
pletion (Knuth and Bendix, 1983), to construct a term-rewriting system
(TRS) that is confluent, terminating, and equivalent to the set of equations.
The result of completion is a decision procedure that checks whether a
program term p is a representative of an equivalence class—i.e., whether
p is in normal form. The difficulty in completion is that constructing such
a decision procedure is undecidable, as equations are rich enough to en-
code Turing machines. Nonetheless, significant progress has been made
in completion algorithms and termination proving (e.g., (Wehrman et al.,
2006; Giesl et al., 2006; Winkler and Middeldorp, 2010)), which is used for
completion.

Given a normalizing TRS resulting from completion, we will show in
Section 6.5 how to incorporate it into existing synthesis techniques in order
to prune away redundant fragments of the search space and accelerate
synthesis.
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6.2 Overview of Synthesis Modulo Equations

Figure 6.1 provides an overview of our proposed synthesis approach. A
synthesis modulo equations problem is defined by two inputs. First, we are
given a synthesis problem (Definition 2.17), which contains a synthesis
domain described as a term algebra TΣ. Second, we expect equational speci-
fications, which are equations over terms in TΣ. For example, an equation
might specify that a function symbol f is associative (f(x,y) = f(y, x)), or
that two function symbols f and g are inverses of each other (f(g(x)) =
g(f(x)) = x). Below, we describe the various components in Figure 6.1 in
detail.

Synthesis modulo equations problem

Consider the function symbols in Table 6.1. The symbols, with their default
interpretations, describe basic integer operations as well as a number of
functions over strings and byte arrays that form a subset of Python 3.7’s
string API. We provide the canonical interpretation of some of the non-
standard symbols. split(x, y) splits the string x into a list of strings using
the delimiter y, e.g.:

split "hizuwzmadison" "z" = ["hi", "uw", "madison"]

The function join(x, y) concatenates a list of strings x using the delimiter
y. Functions encode/decode convert between strings and UTF-8 byte arrays.

Equational Specifications

Even for a simple set of components, there is a considerable amount of
latent domain knowledge that we can exploit during synthesis. Table 6.2
provides a partial view of the equations that we can utilize for the compo-
nents in Table 6.1. The variables x,y, z are implicitly universally quantified.
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Component name Description

Integers
+ : int→ int→ int integer addition
− : int→ int→ int integer subtraction
∗ : int→ int→ int integer multiplication
abs : int→ int absolute value

Strings and byte arrays
++ : string→ string→ string str concatenation
len : string→ int str length
swap : string→ string swap upper/lowercase
split : string→ string→ [string] split str w/ delimiter
join : [string]→ string→ string concat. list w/ delimiter
encode : string→ utf encode str as UTF-8
decode : utf→ string decode UTF-8 into str

Table 6.1: Example synthesis domain over integers and strings

Equational specifications

x+ y = y+ x len(x++ y) = len(x) + len(y)
(x+ y) + z = x+ (y+ z) swap(swap(x)) = x
x ∗ (y+ z) = (x ∗ y) + (x ∗ z) join(split(x,y),y) = x
abs(abs(x)) = abs(x) decode(encode(x)) = encode(decode(x)) = x

Table 6.2: Partial list of equations for integer and string components

Consider, for instance, the following equation:

∀x,y. join(split(x,y),y) = x

This equation connects split and join: splitting a string x with delimiter
y, then joining the result using the same delimiter y, produces the stringx.
In other words, split and join are inverses, assuming a fixed delimiter y.

Other equations specify, e.g., that abs is idempotent (∀x. abs(abs(x)) =
abs(x)) or that the function swap is an involution (∀x. swap(swap(x)) = x).

Completion Phase

Two programs are equivalent with respect to the equations if we can use
the equations to rewrite one into the other. Given the set of equations,
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we would like to be able to partition the space of programs into equiva-
lence classes, where two programs are in the same equivalence class if
and only if they are equivalent with respect to the equations. By parti-
tioning the space into equivalence classes, we can ensure that we only
consider one representative program per equivalence class. The more
equations we add—i.e., the more domain knowledge we have—the larger
our equivalence classes are.

Given the set of equations, the completion phase generates a TRS that
transforms any program term into its normal form—the representative of
its equivalence class. The process of determining term equality modulo
equations is generally undecidable (Novikov, 1955), since equations are
rich enough to encode the transitions of a Turing machine. Completion
attempts to generate a decision procedure for equality modulo equations,
and as such can fail to terminate. Nevertheless, advances in automatic
termination proving have resulted in powerful completion tools (e.g., Win-
kler and Middeldorp (2010); Wehrman et al. (2006)). Note that completion
is a one-time phase for a given synthesis domain, and therefore can be
employed offline, where it won’t effect synthesis performance.

The Term Rewriting System

The TRS generated by completion is a set of rewrite rules of the form l→ r,
which specify that if a (sub)program matches the pattern l, then it can be
transformed using the pattern r. For instance, completion of the equations
in our running example might result in a system that includes the rule

swap(swap(x))→ x

That is, for any program containing the pattern swap(swap(x)), where x is
a variable indicating any complete sub-term, we can rewrite it to x.

The above rule is a simple syntactic transformation (which we call
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an orientation) of the corresponding equation. However, some equations
result in rules that require more delicacy. Consider, for instance, commu-
tativity of addition. The completion procedure will generate an ordered
rewrite system to deal with such unorientable rules. For example, one rule
that might be generated is

x+ y→> y+ x

which specifies that a program of the form x + y can be rewritten into
y + x if and only if x + y > y + x, where > is a well-founded reduction
ordering on program terms. Often, the difficulty in completion is finding
an appropriate reduction order, just as finding a ranking function is the key
for proving program termination.

Given the TRS generated by the completion procedure, checking if a
program p is in normal form is a simple process: if any of the rewrite rules
in the TRS can be applied to p, then we know p is reducible and therefore
not in normal form.

Synthesis with Equivalence Reduction

Let us now discuss how a synthesis procedure might utilize the TRS
generated by completion to prune the search space. For the sake of illus-
tration, suppose our synthesis technique constructs programs in a bottom-
up fashion—combining small programs to generate larger programs—a
strategy that is employed by a number of existing synthesis algorithms
(Albarghouthi et al., 2013; Menon et al., 2013; Alur et al., 2013).

Consider the following simple program:

let f s count = (len (s ++ "012")) + count

where s is a string variable and count is an integer variable. The syn-
thesizer constructs this program by applying integer addition to the two
smaller expressions: len (s ++ "012") and count. To check if a program
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Figure 6.2: Number of terms vs. term size with varying levels of equiva-
lence reduction

is in normal form, the synthesizer attempts to apply all the rules in the
TRS generated by completion. If none of the rules apply, the program is
irreducible, or in normal form. If any rule applies, we know the program
is not in normal form, and we can completely discard this program from
the search space. But what if the final solution uses this discarded program
as a sub-term? By construction of the TRS, if a program p is not in nor-
mal form, then all programs where p is a sub-program are also not in
normal form—intuitively, we can apply the same rewrite rule to p as a
sub-program.

By ensuring that we only construct and maintain programs in normal
form, we drastically prune the search space. Figure 6.2 shows the num-
ber of well-typed programs per program size in our running synthesis
domain (augmented with two integer and two string variables). The blue
line shows the number of programs per size of the abstract syntax tree.
When we include the equations in Table 6.2 that only deal with integer
components, the number of programs per size shrinks, as shown by the
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green line. Incorporating the full set of equations over integer and string
components shrinks the number of programs further, as shown by the red
line. For instance, at 11 AST nodes, there are approximately 21 million
syntactically distinct programs, but only about 20% of them are in normal
form.

In all but the simplest of synthesis domains, the number of programs
explodes as we increase the size. Utilizing the equations allows us to
delay this explosion, and to peer deeper into the space of programs. In
Section 6.7, we will experimentally demonstrate the utility of equations
on practical synthesis applications.

6.3 Defining Synthesis Modulo Equations

Recall that S = (Σ,φ,h) is a synthesis problem (Definition 2.17): Σ induces a
synthesis domain TΣ of program terms, whileφ and h encode a correctness
constraint and a qualitative objective, respectively. We will extend this
definition (and the corresponding solutions) with sets of equations.

Definition 6.1 (Equations over Terms). Let Σ be a signature, and X be a
countable set of variables. A Σ-equation is a pair (t1, t2) ∈ TΣ(X) × TΣ(X),
which denotes the universally quantified formula ∀X. t1 = t2.

Example 6.2 (Matrix Operations). Suppose that the synthesis problem provides
the signature ({m} ,Σ), where:

Σ = {t : m→ m,+m : mm→ m, i : ε→ m}

where t computes the matrix transpose, +m is matrix addition, and i is an input
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matrix. A possible set of Σ-equations is:

t(t(x)) = x (s1)

t(x+m y) = t(x) +m t(y) (s2)

where x and y are variables in X. Equation s1 specifies that transposing a matrix
twice returns the original matrix, and equation s2 specifies that transposition
distributes over matrix addition.

Using the set of equations {s1, s2}, we can infer that the following programs
are semantically equivalent:

t(t(i) +m t(i)) =s2 t(t(i)) +m t(t(i)) =s1 i+m i

Given a synthesis problem S, the set of Σ-equations E induce an equiv-
alence relation on terms in TΣ. We shall use t1 =E t2 to denote that two
program terms are equivalent modulo E (formally defined in Section 6.4).
Using =E, we can partition TΣ into a union of disjoint equivalence classes:

TΣ =
⊔
i∈I

Pi

where for all t1, t2 ∈ TΣ, t1 =E t2 if and only if ∃i ∈ I. t1, t2 ∈ Pi. For each
equivalence class Pi, we shall designate a single program pi ∈ Pi, called
the representative of Pi. A program term t ∈ TΣ is in normal form (denoted
Norm(t)) if and only if it is a representative of some equivalence class Pi.

Definition 6.3 (Synthesis Modulo Equations Problem). Let S = (Σ,φ,h)
be a synthesis problem (Definition 2.17), and let E be a set of Σ-equations (Defi-
nition 6.1). The pair (S,E) is a synthesis modulo equations problem.

Let t ∈ TΣ. The term t is a solution to (S,E) if and only if

t ∈ argmint∈TΣ,t|=φ,Norm(t) h(t)
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Definition 6.3 is much like Definition 2.17, except a solution only need
be optimal with respect to other normal forms.

6.4 Term Rewriting and Completion

We will know extend our use of terms with the theory of term rewriting
systems and discuss the use of completion to transform our equations E into
a decision procedure that detects if a program is in normal form. For an
in-depth view of term rewriting, we refer the reader to Baader and Nipkow
(1998).

Rewrite Rules

A rewrite system R is a set of rewrite rules over some signature.

Definition 6.4 (Rewrite Rules and Systems). Let Σ be a signature, and let X
be a countable set of variables. A rewrite rule is a pair of the form:

(l, r) ∈ TΣ(X)× TΣ(X)

where Vl ⊆ Vr; the pair is written l→ r.
A rewrite rule l → r rewrites t1 into t2 (written t1

l→r−−→ t2) if and only if
there exists (i) a context C, a variable assignment v : X→ TΣ, and a term s ∈ TΣ
such that

t1 = C [s] and s = v∗(l) and t2 = C [v∗(r)]

A set of rewrite rules R is called a term rewriting system, and induces a
relation→R over TΣ × TΣ as follows:

t1 →R t2 ⇔ ∃(l→ r) ∈ R. t1
l→r−−→ t2
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We illustrate rewrite rules with an example.

Example 6.5. Consider the rewrite rule f(x, x) → g(x), and consider the pro-
gram term t = f(f(a,a),b), where a and b are two constant function symbols.
We can apply the rewrite rule to rewrite t into t ′ = f(g(a),b) by replacing the
subprogram f(a,a) with g(a).

We will use→∗R to denote the reflexive transitive closure of the rewrite
relation. The symmetric closure of→∗R, denoted↔∗R, forms an equivalence
relation. When clear from context, we shall drop the subscript R.

Normal Forms

For a given TRS R, a program term t is R-irreducible if and only if there is
no program term t ′ such that t→R t ′. For a fixed t, the set of R-irreducible
programs reachable from p via →R is its set of normal forms. We write
NR(t) = {t ′ | t→∗R t ′, t ′ R-irreducible} for the normal forms of t.

A TRSR is normalizing if and only if, for every program term t, |NR(t)| >
1. R is terminating if and only if the relation→R is well-founded; that is, for
every term t, there exists n ∈ N such that there is no t ′ ∈ TΣ where t→nR t ′
(i.e., there is no t ′ reachable from t through n rewrites).

To synthesize exclusively normal forms, one might rewrite the synthe-
sis domain so that all terms are normal by construction. This can be done
by (i) interpreting Σ and R as regular tree languages, (ii) computing their in-
tersection, which is again regular, and (iii) converting the intersection into
a Σ ′. However, expressing R as a regular tree grammar requires the rules
to be unordered (see below) and left-linear (Otto, 1999); these conditions
are too strong to be a general solution.
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Completion Procedures

Equations take a similar form to rewrite rules, and as such it is often
common to treat an equation (t1, t2) as a pair of rewrite rules, t1 → t2

and t2 → t1 (assuming Vt1 = Vt2). This naíve construction, however,
produces a TRS that is not terminating, and so cannot easily be used for
computing determining unique normal forms. To generate a terminating
TRS equivalent to a set of equations E, we turn to completion procedures.

For our purposes, we only need a declarative view of completion pro-
cedures. A completion procedure provides a term rewriting system Rc

such that t↔∗R t ′ ⇔ t =E t
′ and, for any program term t, applying rules

in Rc will always lead to a unique normal form in finitely many rewrites,
regardless of the order in which rewrites are applied. Formally, Rc is
terminating and confluent.

Completion is generally undecidable. Knuth and Bendix (1983) are
responsible for the first completion procedure; it repeatedly attempts
to orient equations—turn them into rewrite rules by making one side
l and one side r—through syntactic transformations. As such, Knuth-
Bendix completion can fail to produce a result, even if it terminates, as not
all equations are orientable. Bachmair et al. (1989) neatly side-step this
weakness by presenting a completion procedure that cannot terminate and
still fail, called unfailing completion. In order to handle unorientable rules,
unfailing completion introduces ordered rules: let > be a reduction order—a
well-founded order that ensures termination of the rewrite system—and
let r : u →> v be an ordered rule. Then t1 → t2 by rule r if and only if
t1

u→v−−−→ t2 and t1 > t2.
Recall our matrix domain from Example 6.2, and suppose we have the

equation x+my = y+mx. Knuth-Bendix completion will fail to orient this
rule, but unfailing completion, when provided with a suitable reduction
order >, would generate the ordered rule x +m y →> y +m x. Modern
completion tools are able to simultaneously complete a set of rules and
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derive an appropriate reduction order (Winkler and Middeldorp, 2010;
Wehrman et al., 2006).

Reduction Orders

The Knuth-Bendix order (KBO) is a standard family of reduction orders that
we will use in our implementation and evaluation. The formal definition
of KBO is not important for our exposition, and we thus relegate it to
Appendix D.1. We will denote a KBO as >KBO, and note that naïvely
computing KBO following its standard definition is polynomial in the size
of the compared terms. We discuss our use of (and the importance of) a
linear-time implementation in Section 6.7.

Another prominent class of reduction orders are the path orderings,
such as the lexicographic path order (LPO) and multiset path order (MPO). A
disadvantage of LPO and MPO is that naive implementations are exponen-
tial in the size of the terms, and even optimized implementations are only
polynomial Löchner (2006). Furthermore, while there exist equations that
path orders can orient that KBO fails to, they sometimes orient equations
in ways that massively expand the size. The weights of KBO provide a
check to this behavior, limiting how large (with respect to size) the right-
hand side of a rule can be. This property makes KBO a more natural fit
for synthesis tasks.

6.5 Synthesis Modulo Equations

Bottom-up synthesis techniques explore the space of programs in a bottom-
up, dynamic-programming fashion, building larger programs from smaller
ones. Examples include Escher (Albarghouthi et al., 2013), the enumer-
ative solver of SyGuS (Alur et al., 2013), and the probabilistic search of
Menon et al. (Menon et al., 2013).
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(a) Bottom-Up Synthesis

(Init)
C← ∅

t ∈ C t |= φ
(Verify)

t is a solution

f ∈ Σ {t1, . . . , tn} ⊆ C t = f(t1, . . . , tn) RootNorm(t)
(Expand)

C← C ∪ {t}

(b) Top-Down Synthesis

(Init)
C← { }

t ∈ C t |= φ t complete
(Verify)

t is a solution

f ∈ Σ t [ ] ∈ C t ′ = t [f( 1, . . . , n)] Norm(t ′)
(Expand)

C← C ∪ {t ′}

Figure 6.3: Algorithms for synthesis with equivalence reduction

Top-down synthesis techniques explore the space of programs in a top-
down fashion, effectively, by unrolling the signature parameterizing the
search space. A number of recent synthesis algorithms, particularly for
functional programs, employ this methodology, e.g, the approach in Chap-
ter 3, Myth (Osera and Zdancewic, 2015), Myth2 (Frankle et al., 2016), λ2

(Feser et al., 2015), and SynQuid (Polikarpova et al., 2016).
We now present abstract algorithms for these techniques and show

how to augment them with equivalence reduction.

Bottom-Up Synthesis Modulo Equations

Figure 6.3(a) shows a bottom-up synthesis algorithm as a set of guarded
inference rules that can be applied non-deterministically. The only state
maintained is a set C of explored programs, which is initialized to the
empty set using the rule (Init). The algorithm terminates whenever the
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rule (Verify) applies, in which case a solution to (S,E) has been found,
modulo optimization of the qualitative objective h.

The rule (Expand) creates a new program term t by applying an n-ary
function f to n program terms from the set C. Observe, however, that
(Expand) maintains the invariant that all programs in C are in normal
form. This invariant can be used to simplify checking Norm(t) during
the (Expand) step. In synthesizing t = f(t1, . . . , tn), we already know that
terms t1, . . . , tn are normal. Therefore, if t is not normal, it must be due to
a rule applying at the root. Checking this property, called root-normality,
simplifies rule application—instead of examining all sub-terms of t to
see if the rule l → r applies, it suffices to check whether there exists an
assignment v : X→ TΣ such that v∗(t) = v∗(l).

Top-Down Synthesis Modulo Equations

Figure 6.3(b) shows the top-down synthesis algorithm, a simplified ver-
sion of the algorithm in Chapter 3. The algorithm maintains a set C of
incomplete program terms. C is initialized with the term  , using (Init).
The rule (Expand) picks an incomplete term t ∈ C and substitutes one of
its wildcards with a new program term. The algorithm terminates when a
complete program in C satisfies the specification φ, as per rule (Verify).

The rule (Expand) checks whether t is in normal form before adding it
to C. However, note that the algorithm maintains incomplete programs in
C, and even if an incomplete term is normal, not all complete terms deriv-
able from it through (Expand) need be normal. Therefore, the algorithm
may end up exploring sub-trees of the search space that are redundant. De-
ciding if an incomplete program has complete instances in normal form is
known as checking R-ground reducibility, which is decidable in exponential
time (Comon and Jacquemard, 1997). Our formulation avoids exponential
checks at the cost of exploring redundant sub-trees.
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6.6 Properties of Equivalence Reduction

Synthesis modulo equations enjoys several nice properties. We begin by
presenting a notion of consistency between our correctness constraint φ
and equations:

Definition 6.6. A correctness constraint φ is E-consistent if and only if t1 =E

t2 ⇒ (t1 |= φ ⇐⇒ t2 |= φ).

This definition lifts naturally to synthesis modulo equations problems:

Definition 6.7. A synthesis modulo equations problem (S,E) is consistent if
and only if φ is E-consistent.

In practice, it is straightforward to ensure a synthesis modulo equa-
tions problem (S,E) is consistent. A common approach is ensuring that E
is semantics-preserving, and that φ cares only about the semantics of candi-
date programs—e.g., not their runtime or memory overhead. When we
have such guarantees, we are free to prune unnecessary programs safe in
the knowledge that another version still exists in the search space. This
intuition leads very naturally to a guarantee of soundness:

Theorem 6.8 (Soundness). Let (S,E) be a consistent synthesis modulo equa-
tions problem. Then, if bottom-up or top-down synthesis returns t, t is a solution
to (S,E).

The proof—which is similar to the proofs of Theorem 3.5—proceeds
through structural induction on the inference rules defining bottom-up
and top-down synthesis, and the observation that when we prune we
always preserve at least one program term t such that t |= φ. Furthermore,
consistent synthesis problems satisfy a weak notion of completeness:

Theorem 6.9 (Relative Completeness). Given a consistent synthesis modulo
equations problem (S,E), if t is a solution to (S,E) then bottom-up synthesis
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(equivalently, top-down synthesis) will return a solution to (S,E) in finitely-
many steps.

Again, the proof mirrors that of Theorem 3.6.
The above theorems, when combined with the ease of guaranteeing

(S,E) is consistent, are the central strength of synthesis modulo equations.
When provided with a synthesis framework built around a fair implemen-
tation of bottom-up or top-down synthesis, we are free to guide the search
by providing equations consistent with the specification, reducing the
search space dramatically and—as we will see in Section 6.7—improving
the performance noticeably.

Incomplete Completion

A useful property of Theorem 6.8 and Theorem 6.9 is that—when φ is
dependent only on semantics—we only require our equations E to be
consistent with the semantics of candidate programs, not fully explain
them. We can use this fact to preserve soundness and completeness in the
face of undecidability of completion procedures.

If, in the process of constructing a procedure for Norm(·), we are unable
to complete the equations E, we will often be able to salvage an under-
approximation R of a normalizing TRS for E. The following definitions
characterize this behavior:

Definition 6.10. A TRS R under-approximates equations E if and only if t1 ↔∗R
t2 ⇒ t1 =E t2 for all program terms t1 and t2.

A consistency constraint φ is R-consistent if and only if t1 ↔∗R t2 ⇒ (t1 |=

ψ ⇐⇒ t2 |= φ) for all program terms t1 and t2.

Under-approximating rewrite systems are not useless. The following
theorem shows that by under-approximating, we maintain consistency.
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Theorem 6.11. Let TRS R under-approximate E, and φ be E-consistent. Then
φ is R-consistent.

The proof follows immediately from the definitions. However, The-
orem 6.11 allows us to use an under-approximation of E to construct
Norm(·) and still maintain soundness and relative completeness of our
search while gaining the performance benefits of equivalence reduction.

Salvaging an under-approximation from a failed completion run is
straightforward. The completion procedures mentioned in this paper
(Wehrman et al., 2006; Knuth and Bendix, 1983; Winkler and Middeldorp,
2010) all grow a TRSR by adding rules that are consistent with the provided
set of equations E until R is able to fully describe a set of normal programs
for E. Therefore, stopping the completion procedure at any time, and for
any reason, will yield an under-approximation and preserve correctness
of the synthesis procedure.

6.7 Implementation and Evaluation

We implemented our technique in an existing efficient synthesis tool, writ-
ten in OCaml, that employs bottom-up and top-down search strategies.
Our tool accepts a signature Σ, defined as typed OCaml functions, along
with a set of equations E over the provided OCaml functions. For the
correctness constraint φ and the qualitative objective h, we utilize input-
output examples (see Section 6.7 below) and a simple size function.

The implementation of bottom-up and top-down synthesis augment
the abstract algorithms in Section 6.5 with a deterministic search strategy
that utilizes types, as in Chapter 3 and Chapter 4, so that only well-typed
programs are enumerated.
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Completion and Reduction Orders

Completions of equations were found using the omkbTT tool (Winkler
and Middeldorp, 2010), which employs termination provers for generating
a reduction order. All completions used the KBO reduction order.

During synthesis, the reduction order can be a performance bottleneck,
as we need to compute it for every candidate program. If we were to imple-
ment KBO directly from its formal definition, evaluating s >KBO t would
be quadratic in |s| + |t|. However, program transformation techniques
have given us an algorithm linear in the sizes of the terms (Löchner, 2006).
In our tool, we implement Löchner’s linear-time KBO algorithm. The
performance impacts of the reduction order are discussed in Section 6.7.

Data Structures for Normalization

Every time a candidate program is considered, we check if it is in nor-
mal form using Norm(·) (recall algorithms in Figure 6.3). More precisely,
given a candidate program term t, Norm(t) attempts to find an assignment
v : X → TΣ and a rule l → r such that t = C [v∗(l)]. This is a generaliza-
tion problem, which has been studied for years in the field of automated
theorem proving. A naïve implementation of Norm(t) might keep a list
of rules in the TRS, and match candidate programs against one rule at
a time. Instead, we borrow from the existing literature and use perfect
discrimination trees (McCune, 1992) to represent our list of rules. Perfect
discrimination trees are used in the Waldmeister theorem prover (Hillen-
brand et al., 1997) to great effect; the tree representation lets us match multiple
rules at once, and ignore rules that are inapplicable.

A perfect discrimination tree can be thought of as a trie. Figure 6.4
illustrates the construction for a set of unordered rules—ordered rules
can be added analogously. First, rules are rewritten using De Bruijn-
like indices (De Bruijn, 1972). Second, the left-hand side of every rule is
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Rlhs =


abs(abs(x))
+(x,+(y, z))
+(x, 0)

−→ S

abs abs x

+

x 0

+ y z

Figure 6.4: Building a perfect discrimination tree from left-hand side of
rules

converted into a string through a pre-order traversal. Finally, all string
representations are inserted into the trie.

To match a candidate program term t against the trie, we first convert
t to a flat-term, which is a linked-list representation of t in pre-order, with
forward pointers to jump over sub-terms. For example, the term max(x,y)+
0 is converted to:

+ max x y 0

Now, matching the program against the trie is done using a simple back-
tracking algorithm, which returns a substitution (if one exists) that converts
the left-hand side of a rule in our set to the query program. See McCune
(1992) for details.

Using perfect discrimination trees in our normalization procedure has
several immediate benefits, the most important of which is that unused
rules do not impact the performance, as their paths are never followed.
Section 6.7 will evaluate the performance overhead of normalization.

Synthesis Domain and Benchmarks

A primary inspiration for this work came from applying synthesis to
the domain of large-scale, data-parallel programming, as in Chapter 3.
Here, we will focus on synthesizing reducers, and so will be applying the
verification technique from Section 3.4.



174

let add-c q1 q2 =
let real = (fst q1) + (fst q2) in
let imaginary = (snd q1) + (snd q2) in
pair real imaginary

Figure 6.5: Addition of two complex numbers of the form a+ bi, where a
and b are represented as a pair

Our synthesis domain comprises four primary sets of components,
each consisting of 10+ components, that focus on different types. These
types—integers, tuples, strings, and lists—are standard, and appear as the
subject of many synthesis works. The full list of components appears in
Appendix D.2.

We manually gathered a set of 50 equations for our synthesis domain.
Alternatively, this process can be automated using tools like QuickSpec
(Claessen et al., 2010) and Bach (Smith et al., 2017). Each class of compo-
nents has between 3 (lists) and 21 (integers) equations, with a few equations
correlating functions over multiple domains (e.g., strings and integers in-
teracting through length). Completions of the equations are a mix of
ordered and unordered rules describing the interaction of the components.
Some equations are described below, but the full list of equations is in
Appendix D.2.

1. Strings: In addition to the equations relating upper, swap, and lower (as
defined in Section 6.1), we include equations encoding, e.g., idempotence
of trim, and the fact that many string operations distribute over concate-
nation. For instance, we have the equation

∀x,y. len(x) + len(y) = len(x++ y)

2. Lists: We provide equations specifying that operations distribute over list
concatenation, as in ∀x,y.sum(x) + sum(y) = sum(cat(x,y)). In addition,



175

we relate constructors/destructors, as in ∀x,y.head(cons(x,y)) = x.

Benchmarks Our benchmarks were selected to model common reducers
over our domain, and typically require solutions with 10–12 AST nodes—
large enough to be a challenge for state-of-the-art synthesizers, as we see
later. A few examples are given below, and the full list is in Appendix D.2.

1. Tuples and integers: The tuple benchmarks expose several different uses
for pairs in reducers—as an encoding for rational numbers (such as in
mult-q), for complex numbers (in add-c), and for points on the plane (as in
distances). We also treat pairs as intervals over integers (e.g., intervals
synthesizes join in the lattice of intervals (Cousot and Cousot, 1977)). Fig-
ure 6.5 shows the synthesized program for one of those benchmarks.

2. Lists and integers: Lists are also an interesting target for aggregation, e.g.,
if we are aggregating values from different scientific experiments, where
each item is a list of readings from one sensor. List benchmarks compute
a value from two lists and emit the result as a singleton list. For example,
ls-sum-abs computes absolute value of the sums of two lists, and then
adds the two, returning the value as a singleton list.

Like many synthesis tools, we use input–output examples to charac-
terize the desired solution. Examples are used to ensure that the solution
(i) matches user expectations and (ii) forms a csg.

Experimental Evaluation

Our experiments investigate the following questions:

RQ1 Does equivalence reduction increase the efficiency of synthesis algorithms
on the domain described above?

RQ2 What is the overhead of equivalence reduction?
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RQ3 How does the performance change with different numbers of equations?

RQ4 Are the data structures used in theorem provers a good fit for synthesis?

To address these questions, we developed a set of 30 synthesis benchmarks.
Each benchmark consists of: (i) a specification, in the form of input–output
examples (typically no more than 4 examples are sufficient to fully specify
the solution); (ii) a set of components from the appropriate domain; (iii) a
set of ordered and unordered rewrite rules generated from equations over
the provided components.

For each synthesis algorithm, bottom-up (BU) and top-down (TD), we
use three different levels of equivalence reduction:

1. BU and TD: equivalence reduction disabled.

2. BUn and TDn: equivalence reduction enabled.

3. BUñ and TDñ: equivalence reduction without ordered rules. By dropping
ordered rules from the generated TRS, we get more normal forms (less
pruning).

See Table 6.3 for the full results. For each experiment, we measure total
time taken in seconds. Grey boxes indicate the best-in-category strategy
for each benchmark—e.g., the winner of the sub-c benchmark is BUn in
the bottom-up category, and TDñ in top-down. Values reported are the
average across 10 runs.

RQ1: Effects of equivalence reduction on performance In 2 out of the
3 benchmarks where BU and TD do not terminate, adding equivalence
reduction allows the synthesizer to find a solution in the allotted time. For
bottom-up, in all benchmarks where BU terminates in under 1s, both
BUn and BUñ outperform the naive BU, often quite dramatically: in
sum-to-second, BU takes over 60s, while BUn and BUñ finish in under 2s.
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Bottom-up variations Top-down variations Other tools

Benchmark BU BUñ BUn TD TDñ TDn λ2 SynQuid
Integers

add 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.18
max 0.01 0.01 0.01 0.03 0.05 0.02 0.4 0.6
min 0.01 0.01 0.01 0.05 0.02 0.04 0.01 0.62

Tuples & integers
add-4 0.05 0.05 0.11 0.12 0.14 1.29 5.35 8.86
mult-q 7.38 0.48 0.44 15.63 1.95 3.03 7 7
div-q 7.38 0.48 0.44 14.22 2.12 3.82 7 7
add-c 7.39 0.48 0.44 13.51 3.68 8.11 7 7
sub-c 7.35 0.48 0.43 31.63 4.51 9.28 7 7
add-q-long 7 44.65 49.51 7 57.43 95.55 7 7
max-pair 32.79 4.02 4.92 40.25 21.53 56.21 7 7
intervals 32.76 4.00 4.92 74.77 25.25 21.80 7 7
min-pair 32.72 4.03 4.95 81.88 19.55 67.49 7 7
sum-to-first 52.74 1.18 0.62 110.35 5.47 15.06 7 7
sum-to-second 68.93 1.51 0.70 107.88 5.27 11.22 7 7
add-and-mult 7.39 0.48 0.45 26.12 1.51 9.34 7 7
distances 7 7.36 5.58 7 50.31 100.66 7 7

Strings & integers
str-len 1.40 0.42 0.52 4.47 1.58 2.06 - -
str-trim-len 26.29 6.79 7.14 219.50 52.21 218.61 - -
str-upper-len 5.70 1.78 1.81 26.93 5.64 8.01 - -
str-lower-len 3.86 1.23 1.26 22.48 6.93 4.63 - -
str-add 0.05 0.02 0.03 0.26 0.08 0.07 - -
str-mult 0.05 0.02 0.03 0.17 0.05 0.06 - -
str-max 1.79 0.45 0.54 8.10 1.32 2.99 - -
str-split 7 7 7 7 7 7 - -

Lists & integers
ls-sum 0.00 0.02 0.03 0.01 0.02 0.11 0.01 10.43
ls-sum2 147.91 88.33 107.02 229.66 7 254.87 7 7
ls-sum-abs 0.08 0.07 0.10 0.22 0.19 0.37 63.00 7
ls-min 0.00 0.02 0.03 0.01 0.02 0.10 0.01 -
ls-max 0.00 0.02 0.03 0.01 0.02 0.10 0.01 -
ls-stutter 27.68 5.12 8.01 50.42 15.90 93.84 7 -

Table 6.3: Experimental equivalence reduction results; we impose a CPU
timeout of 300 seconds (7 denotes a timeout) and a memory limit of 10GBs
per benchmark

For top-down, TDñ outperforms TD in nearly all benchmarks that take TD
more than 1 second (the exception being ls-sum2). With ordered rules,
the exceptions are more numerous. The most egregious is ls-stutter,
going from 50s with TD to 94s with TDn. There is still potential for large
performance gains: in sum-to-second, we decrease the time from 108s in
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TD to under 12s for TDn and under 6s for TDñ.
Equivalence reduction appears to drastically improve the performance

of bottom-up and top-down synthesis. In general, the unordered rules
outperform the full ordered rules. In the bottom-up case, this perfor-
mance gap is smaller than 5s: while the ordered rules are more costly
to check, bottom-up synthesis only requires that we check them at the
root of a program. In top-down, we must check rule application at all
sub-programs. This magnifies the cost of the ordered rules and leads to
significant performance differences between TDn and TDñ.

RQ2-a: Overhead of equivalence reduction Figure 6.6 provides a dif-
ferent look at the benchmarks in Table 6.3: for each benchmark where BU
and TD do not terminate in less that 1 second, we compute (i) the overhead,
the percentage of time spent in the normalization procedure Norm(·);
and (ii) the reduction, the percentage of programs visited compared to the
un-normalized equivalent, BU or TD. The results are shown as density
plots.

Figure 6.6a and Figure 6.6c show the performance characteristics of
BUñ and TDñ, respectively. Both have consistent overhead—40% for BUñ
and 25% for TDñ—although TDñ has a more reliable reduction of over
85%, while BUñ ranges from 60% to 90% reduction. Both strategies boast
large reductions in the number of candidate programs visited for rea-
sonable overhead, although TDñ is the clear winner—BUñ dominates
TDñ in Table 6.3, suggesting that normalization isn’t enough to fully close
the gap between BU and TD. In Figure 6.6b and Figure 6.6d, we see the
performance characteristics of BUn and TDn, respectively. Compared to
Figure 6.6a and Figure 6.6c, we see a higher overhead with less consistent
normalization. Both figures have secondary clusters of benchmarks out-
side the region of highest density: these contain the benchmarks from the
strings and integers domain.
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Figure 6.6: Equivalence reduction overhead—benchmarks are converted
into (overhead, reduction) pairs and plotted using kernel density estima-
tion (KDE), with marginal distributions projected on to the side.

This view of the data supports the conclusion of Table 6.3 that un-
ordered rules outperform ordered rules. While our implementation of
KBO is optimized, evaluating the reduction order is still a bottleneck. Our
implementation verifies candidate solutions quickly, but the benefits of
high reduction outweigh the large overhead as verification time increases.
For instance, when providing more input-output examples, the verification
time increases but not the overhead. In the ls-stutter benchmark, BUñ
visits 1,288,565 programs with an average overhead of 1.07 seconds, while
BUn visits 792,662 programs with an average overhead of 5.6 seconds.
Increasing the verification cost per program by only 0.0001 seconds will
raise BUñ’s time by 129s, while BUn’s time is only raised by 80s—easily a
large enough gap to out-scale the overhead. Indeed, when we instrument
our tool with a synthetic delay, this behavior is visible.

RQ2-b: Normalization overhead Experience holds that normalization
procedures don’t scale as candidate programs become large. To explore
how this behavior might impact the effectiveness of equivalence reduc-
tion, we instrumented our tool to ignore solutions and explore the space
of programs depth-first, during which we record the average overhead
of Norm(·) at all program sizes. Figure 6.7 presents the data for the
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Figure 6.7: Average performance of Norm(·) on sum-to-first; normal
graph represents executions of Norm(·) that return true; removed repre-
sents executions that return false. Time is in microseconds—note the
difference in scale between graphs.

sum-to-first benchmark, although the figures are representative of the
other benchmarks.

Unsurprisingly, Norm(·) scales linearly with program size. This linear
growth appears quite sustainable. Solutions with 100 AST nodes are
beyond modern-day synthesis tools, and a 3x slowdown compared to
programs of size 40 is manageable.

When we compare the performance of BUñ in Figure 6.7a to that of
BUn in Figure 6.7b, we observe an order of magnitude loss in performance.
This holds as well for TDñ and TDn in Figure 6.7c and 6.7d, respectively.
Checking KBO is clearly expensive, and so the observed performance
in Table 6.3 of BUn and TDn indicate a large amount of search-space
reduction occurring.

RQ3 & RQ4: Impact of rules & perfect discrimination trees To deter-
mine how the number of rules impacts our tool’s performance, we com-
pleted our entire set of 50 equations to produce 83 unordered rules that
we randomly sample subsets from (the results from ordered results are
similar). To test the effectiveness of perfect discrimination trees, we com-
pare performance against a naïve algorithm that maintains a list of rules
it checks against one by one on a representative benchmark: str-len.
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Figure 6.8: Performance per number of rules sampled for d-tree and list
over 2 benchmarks; the line is the average of 10 samples per x-value, and
the lighter band is a 95% confidence interval

Not all rules apply to the components used—only 47 out of 83 describe
components used for str-len. We plot the time taken for synthesis per
number of randomly sampled rules, from 0 rules to 150 rules (to clearly
show optimal performance). Results are presented in Figure 6.8.

We see, for both benchmarks, nearly continuously decreasing graphs;
the only exceptions are with low numbers of rules sampled, where it is
likely we have mostly unusable rules. The performance levels off at 83
rules, when we are guaranteed to sample all applicable rules. These re-
sults are promising: completion is undecidable, and so it is impossible to
predict the rules that will be included from a given set of equations. How-
ever, the results in Figure 6.8 indicate that—on average—the more rules
we provide the better the algorithm’s performance, even when the rules
might not be relevant. Furthermore, we see immediately and clearly that
perfect discrimination trees outperform our list-based implementation.
Performance differences are magnified in the TDñ benchmarks, where
checking normality includes checks on every sub-term. On the rest of the
benchmarks, the naive implementation results in an average of an 11%
increase in time for BUñ and a 144% increase for TDñ, which strongly in-
dicates that perfect discrimination trees are an important implementation
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choice.

Gauging benchmark difficulty We considered related tools as a gauge
of benchmark difficulty and a baseline for evaluation. The most similar
tool—λ2 (Feser et al., 2015)—is top-down, type-directed, uses input-output
examples, and searches for programs from smallest to largest. SynQuid
(Polikarpova et al., 2016) synthesizes Haskell programs from refinement
types, using SMT-driven type-directed synthesis. When able, we encoded
specifications of our benchmarks as refinement types.

As seen in Table 6.3, λ2 is either not applicable (strings are not sup-
ported, and so were ignored) or unable to solve most benchmarks. Syn-
Quid exhibits similar behavior and performance. We stress that these
results are meant as a indication of the difficulty of the benchmarks, and
not a head-to-head comparison between our algorithms and those of λ2

and SynQuid.

Threats to validity We identify two primary threats to the validity of
our evaluation. First, we base our evaluation on a single tool in order
to evaluate various algorithms and data structures. However, since our
bottom-up and top-down strategies are (i) instances of standard synthesis
techniques and (ii) comparable to existing implementations (as seen in
Table 6.3), we believe our results can be beneficial to tools like Myth,
SynQuid, and λ2, modulo technical details.

Second, the domains considered in our evaluation—integers, lists, etc.—
operate over well-behaved algebraic structures. These domains form the
core search space of many modern synthesis tools, but one could imagine
domains that do not induce many equational specifications, e.g., GUI
manipulation and stateful domains.
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6.8 Related Work

Program synthesis We are not the first to use normal forms for prun-
ing in synthesis. In type-directed synthesis, Osera and Zdancewic (2015)
and Frankle et al. (2016) restrict the space by only traversing programs in
β-normal form. Equivalence reduction can be used to augment such tech-
niques with further pruning, by exploiting the semantics of the abstract
data types defined. Feser et al. (2015) mention that their enumeration
uses a fixed set of standard rewrites, e.g., x+ 0→ x, to avoid generating
redundant expressions. In contrast, our work presents a general method-
ology for incorporating equational systems into the search by exploiting
completion algorithms.

Superoptimization techniques that search for fast programs (Schkufza
et al., 2013; Phothilimthana et al., 2016) may not be able to directly benefit
from equivalence reduction, as it may impose inefficient normal forms.
It would be interesting to incorporate a cost model into completion and
coerce it into producing minimal-cost normal forms.

In SyGuS (Alur et al., 2013; Udupa et al., 2013), the synthesizer gener-
ates a program encodable in a decidable first-order theory and equivalent
to some logical specification. A number of solvers in this category employ
a counter-example-guided synthesis loop (CEGIS) (Solar-Lezama et al., 2006):
they prune the search space using a set of input-output examples, which
impose a coarse over-approximation of the true equivalence relation on
programs. In the CEGIS setting, equivalence reduction can be beneficial
when, for instance, (i) evaluating a program to check if it satisfies the
examples is expensive, e.g., if one has to compile the program, simulate
it, evaluate a large number of examples; or (ii) the verification procedure
does not produce counterexamples, e.g., if we are synthesizing separation
logic invariants.

A number of works sample programs from a probabilistic grammar
that imposes a probability distribution on programs (Menon et al., 2013;
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Liang et al., 2010; Dechter et al., 2013). It would be interesting to investi-
gate incorporating equivalence reduction in that context, for instance, by
truncating the distribution so as to only sample irreducible programs.

Recently, Wang et al. (2017b) introduced SYNGAR, where abstract
transition relations are provided for each component of a synthesis domain.
The synthesis algorithm over-approximates equivalence classes by treating
two programs equivalent if they are equivalent in the abstract semantics.
The abstraction is refined when incorrect programs are found.

Term-rewriting systems A number of classic works (Reddy, 1989; Der-
showitz, 1985) use completion procedures to transform an equational
specification into a program—a terminating rewrite system. Our setting is
different: we use completion in order to prune the search space in modern
inductive synthesis tools.

Kurihara and Kondo’s multi-completion (Kurihara and Kondo, 1999)
sidesteps the issue of picking a reduction order by allowing completion
procedures to consider a class of reduction orders simultaneously. Klein
and Hirokawa’s maximal completion algorithm (Klein and Hirokawa,
2011) takes advantage of SMT encodings of reduction orders (such as
Zankl et al.’s KBO encoding (Zankl et al., 2009)) to reduce completion to a
series of MaxSMT problems in which the parameters of the reduction order
are left free. Completion tools like omkbTT (Winkler and Middeldorp,
2010) and Slothrop (Wehrman et al., 2006) rely on external termination
provers (Alarcón et al., 2010; Korp et al., 2009).
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7 conclusion

This dissertation is focused on the application of program synthesis to
improve the availability of data in the face of burdens-of-knowledge re-
stricting access. In Chapters 3 and 4, we demonstrated how effective
synthesis can be at providing an interface to meaningful analysis of real-
world data, and in Chapter 5 we presented a technique for automatically
proving high-probability guarantees that relied on synthesis to generate
axioms for probability distributions. Lastly, in Chapter 6, we illustrated
how incorporating domain knowledge can improve the performance of
synthesis across a variety of domains. There is, however, more to be
said and much more to be done. In this chapter we will outline several
promising lines for future work, before providing some closing remarks.

7.1 Future Directions and Extensions

Program synthesis for data access is a natural arms race—for every pa-
per titled Program Synthesis for X published, three new protocols to auto-
mate come to light. Instead of enumerating all possible values for X, we
will frame two concrete challenges extending the work in this disserta-
tion: (i) improving the data efficiency of privacy-preserving queries, and
(ii) synthesizing high utility programs.

Improving Data Efficiency of Privacy-Preserving Queries

Recall from Definition 2.1 that our notion of differential privacy includes
a parameter δ that we immediately assume is 0; this case is called pure
differential privacy. If we relax our guarantee to approximate differential
privacy, when δ > 0, we can more efficiently utilize our privacy budget
through more advanced composition mechanisms (Winograd-Cort et al.,
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2017; Near et al., 2019) that answer adaptive sequences of queries. We
would, therefore, like to synthesize programs in these frameworks.

But adapting the approach of Chapter 4 to systems with adaptive com-
position is not straightforward, in part because tools like Duet utilize
two-tiered languages with (i) a private component and (ii) a non-private
component. This complicates the type system, and introduces challenges
in decomposing the synthesis problem into a sequence of adaptive sub-
problems. A templated approach, such as the one we introduce in Chap-
ter 3, provides a weak form of decomposition, while a framework like
Prose (Polozov and Gulwani, 2015) provides a slightly stronger one. Nei-
ther, however, are suited for the adaptive case. Therefore, the construction
of a notion of adaptive decomposition for program synthesis is necessary
to enable the use of more efficient privacy systems.

Synthesizing High Utility Programs

It is easy to construct a differentially private query (through the gratu-
itous application of noise), but it is not easy to construct a highly useful
query—one needs to reason about the interaction of control flow and
random sampling as it pertains to a high-probability guarantee. Further,
high-probability guarantees with symbolic failure probabilities define a
Pareto frontier with the accuracy-reliability tradeoff, it is not even clear
how to determine if one query is more useful than another on an arbitrary
workload.

Assuming a high-probability guarantee is provided, we might reason-
ably want to synthesize a program satisfying it. Our automatic proof
technique, however, is difficult to use during synthesis, as (i) every execu-
tion takes on the order of tens of seconds, and (ii) we have no means of
applying it to a partial program. The first point is potentially addressable
with optimizations and clever engineering, but the second point requires
we reason about partial proofs.
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Yet, the Hoare-style logic used in Chapter 5 is inherently compositional,
and that is promising. Polikarpova and Sergey (2019) have already demon-
strated how one can convert a Hoare-style program logic into an efficient
synthesis algorithm. In particular, the existence of separating conjunction
provides a strong modality that can be manipulated to direct the search.
It is not clear if such a modality exists for an inversion of probabilistic
trace abstraction, but if one can be found and exploited, it would enable
program synthesis directed by high-probability guarantees.

7.2 Closing Remarks, or: a Promise

Lack of privacy and data availability are real problems that have real
impacts on real people, while the work presented in this dissertation only
exists in journal articles and code repositories. Bridging that gap between
research and practice takes time, effort, and focused communication. In
the case of program synthesis for data accessibiilty, all the techniques in
the world mean little if we don’t reach out and directly apply them towards
making that digital panopticon public use. This is not a sermon; these
words are a promise to ourself that we will put in the work to make our
work meaningful. May our promise be your motivation to do the same.
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a properties of data-parallel synthesis

A.1 Proofs of Soundness and Completeness

Proof of Theorem 3.5. Trivially from the application of the rules (Verify)
and (Cons).

Specifically, let p be returned by (Verify). (Cons) ensures condition 1 of
Definition 3.2 holds (by explicitly constructing p from an h ∈ H and a map
v :W → TΣC), while (Verify) ensures conditions 2 and 3 of Definition 3.2
holds by explicitly checking if p |= E and Determ (p) hold.

To prove Theorem 3.6, we first present two supporting lemmas.

Lemma A.1. Let τ and Γ by a type and context, respectively, and let p ∈ τΓ be a
program that is a (partial) completion of an incomplete program q. Then q ∈ τΓ .

Proof of Lemma A.1. If p is a completion of q, then there exists a witness
v :W → TΣC such that p = v∗(q). Further, there exists a type map σ such
that σΓ ` p : στ. Now, construct the type map δ as follows:

∀ ∈ Dom(v), δ( ) = τ ′, where τ ′, Γ ′ = Infer ( ,p)

Note Γ ′ ⊆ Γ , as v( ) is a sub-term of p and is therefore well-typed in Γ ,
and that Dom(δ) ∩Dom(σ) = ∅. Note also that, by construction,

σδΓ ` q : σδτ

as δ maps the wildcards no longer in p to the type of their replacement in
p. Therefore, σ ◦ δ is a witness to q ∈ τΓ .

Lemma A.2. Suppose τΓ is in the domain of M on a fair execution of the algo-
rithm in which the rule (Verify) is never applied. Then, every complete program
p ∈ τΓ will eventually appear inM(τΓ ).
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Proof of Lemma A.2. We proceed by induction on the depth n of p.

Base Let n = 1. If p is a variable v or constant c, then by fairness it must
eventually be added toM(τΓ ).

App Let p = f(e1, . . . , en) ∈ τΓ be complete. Construct q = f( , . . . , ). By
Lemma A.1, q ∈ τΓ , and by the inductive hypothesis, each ei eventually
appears in M in the appropriate context. This enables the application
of (PApp) using q and e1, . . . , en, which by fairness eventually applies to
produce p ∈ τΓ .

Abs Let p = λx. e. The proof is similar to the case for abstraction.

We can now prove Theorem 3.6.

Proof of Theorem 3.6. Let p satisfy the correctness constraint φS for a syn-
thesis task S = (E,C,H), and let h ∈ H and v : W → TΣC be chosen such
that p = v∗(h). Let  ∈ wild (h). By construction of Infer (·, ·), v( ) ∈ τΓ ,
where τ, Γ = Infer ( ,h).

Therefore, by Lemma A.2, v( ) (or some α-equivalent program) will
eventually appear in M. Eventually, v( ) will appear in M for all  ∈
wild (h), enabling the application of (Cons). By fairness, the execution
will eventually construct p from h using the assignment v, and again, by
fairness, (Verify) will eventually apply on p and succeed.

A.2 Proof of Validity of CSG-Checking

Proof of Theorem 3.8. We will prove each direction by contradiction.

(⇒) Let r be a binary function, and R its encoding. Suppose that VCR is not
valid: the formula

ϕcom ∧ϕassoc ∧ ¬ψCSG
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is therefore satisfiable. LetM be the witnessing model. By construction of
ψCSG,Mmust satisfy at least one of the formulas (i) o1 6= o2 or (ii) o3 6= o5.

1. Suppose M |= o1 6= o2. Then, by construction of R, M[i1] and M[i2]

are witnesses to the non-commutativity of r.

2. SupposeM |= o3 6= o5. Then, by construction of R,M[i1],M[i2], and
M[i3] are witnesses to the non-associativity of r.

(⇐) Suppose (τ, r) is not a CSG. Then one of the following cases must hold:

1. Suppose r is not commutative. Then, by construction of R, there must
be some values c1, c2 ∈ τ such that the formula

R(c1, c2,o1)∧ R(c2, c1,o2)∧ o1 6= o2

where o1,o2 are free variables, is satisfiable. Therefore, VCR cannot
be valid.

2. Suppose r is not associative. Then, by construction of R, there must
be some values c1, c2, c3 ∈ τ such that the formula

R(c1, c2,o1)∧ R(o1, c3,o3)∧ R(c2, c3,o4)∧ R(c1,o4,o5)∧ o3 6= o5

where o1, . . . ,o5 are free variables, is satisfiable. Therefore, VCR can-
not be valid.
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b properties of privacy-aware synthesis

B.1 Multisets and Metric Preservation

In our slight variant of DFuzz , we introduce the following subtyping rule
for multisets:

Φ, Γ |= σ v τ
(v .mset)

Φ∧ S 6 T , Γ |= mset [σ] [S] v mset [τ] [T ]

and state without elaboration that such a rule can integrate with DFuzz’s
proof of metric preservation. Here, we clarify this point through an exam-
ple and inspection of the proof.

Example Multiset Comparison

As we have introduced a new type, so must we introduce an appropriate
metric rule for values of the chosen type. We will add the following rule:

∅ ` v1 : mset [σ] [S] ∅ ` v2 : mset [σ] [S] r = |v1 4 v2|

` v1 ∼r v2 : mset [σ] [S]

where |v1 4 v2| is the size of the symmetric difference between v1 and v2.
This rule is similar to the one originally presented for databases: the only
distinction is the presence of a precise type.

Consider two multisets, v1 and v2, with elements of type σ and size
bounds of S and T , respectively. Now assume S and T are such that

∅ ` v1 : mset [σ] [S], ∅ ` v2 : mset [σ] [T ].

For this to be possible, S and T must be concrete values in N ∪ {∞}. There-
fore, using the subtyping rule (v .mset), we can arrive at the judgements

∅ ` v1 : mset [σ] [K], ∅ ` v2 : mset [σ] [K],
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where K = max(S, T). Applying the metric rule introduced above, we can
derive

` v1 ∼|v1 4 v2| v2 : mset [σ] [K].

Now we can compare multisets, regardless of size bounds, by losing preci-
sion in the dependent indices.

Proof of Metric Preservation

The original presentation of DFuzz contains a chain of lemmas that culmi-
nate in a proof of metric preservation. To account for our new subtyping
and metric rule, we need only modify one of these lemmas, whose critical
statement is given below.

Lemma B.1. Suppose Γ ` e : τ. If ` δ1 ∼γ δ2 : Γ◦ and δ1e is a value, then δ2e

must also be a value and ` δ1e ∼γJΓK δ2e : τ.

Proof of Lemma B.1. By induction on the judgement deriving Γ ` e : τ. We
only need to consider an extension to the subtyping case

Γ ` e : σ ∅ |= σ v τ
(v .R)

Γ ` e : τ
By the inductive hypothesis, δ2e is a value and

` δ1e ∼γJΓK δ2e : σ.

We now consider the new case that σ is mset [α] [S] for some type α and
size term S. By inversion, we have

` δ1e ∼γJΓK δ2e : mset [α] [S]

∅ ` δ1e : mset [α] [S] ∅ ` δ2e : mset [α] [S] γ JΓK = |δ1e4 δ2e|

Note τmust be mset [α] [T ] for some size term T . By hypothesis, we have

∅ |= mset [α] [S] v mset [α] [T ].
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We immediately derive the judgements (replacing mset [α] [T ] by τ)

∅ ` δ1e : τ, ∅ ` δ2e : τ,

and consequently, by application of our new metric rule,

` δ1e ∼γJΓK δ2e : τ.

This lemma allows us to extend our new metric rule to the metric
relation over expressions (and states) when said expressions are also values
(and final states). Our proof above is a necessary and sufficient addition
to prove the rest of the chain leading to metric preservation.

B.2 Proof of Soundness

Our search enjoys guarantees of soundness. To aid in the discussion, we
first introduce some notation to capture the process of using the inference
rules defining the search:

1. Let;I be the smallest relation between synthesis problems and synthesis
states consistent with the rule (Init). That is, if S = 〈σ,C,φk,φs〉 is a
synthesis task (Definition 4.4), and s = 〈φ, e〉 is a synthesis state, we write
S;I s if and only if we can infer s from S using rule (Init).

2. Let ;S be the smallest relation between two synthesis states consistent
with all inference rules except (Init) and (Finish). So if s and s ′ are two
synthesis states, we write s;S s

′ if and only if a single application of an
allowed inference rule lets us derive s ′ from s.
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3. Let;F be the smallest relation between synthesis states and programs con-
sistent with the rule (Finish). We write s;F p if and only if an application
of (Finish) lets us derive p from s.

When clear from context, we will drop the subscript and write ;.
Furthermore, we will abuse notation and treat the above non-subscripted
relations as a single relation (referred to as;), as in S;∗ p, where;∗ is
the transitive-reflexive closure of;.

The following definitions and lemmas will aid us in proving our intu-
itive notion of soundness: the inference rules defining the synthesis cannot
produce a program that fails to be a solution to the provided synthesis
problem.

Definition B.2. Let M be an assignment of variables in the standard model
of symbolic context constraints, expressions-as-terms, and types-as-terms. M
induces an interpretation of symbolic contexts JΩK, and an interpretation of
expressions and types — JeK and JσK, respectively — that replaces all free type
and sensitivity variables with the assignment given byM.

We will write Ω `M e : σ to mean that the typing judgement Ω ` e : σ is
valid with respect to the assignmentM, or more formally: JΩK ` JeK : JσK.

Lemma B.3. Let 〈σs,C,φk,φs〉;∗ 〈φ, p〉. For all M |= φ, for all wildcards
 Ωiσi ∈ Wild(p), and for all closed expressions ei such that Ωi `M ei : σi, the
following judgement holds:

ΓC `M p
[
 Ωiσi /ei

]
i
: σ

Proof of Lemma B.3. The proof is by induction over the inference rules defin-
ing ;. The rule (Init) represents the base case, while every other rule
is an inductive step. We prove the illustrative cases below: the rest are
structurally similar.
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(Init) Assume 〈σs,Σ,φk,φs〉;I 〈φ, p〉 via the (Init) inference rule. Then φ =

φk and p =  Σσs . LetM be a model such thatM |= φk, and let e be a closed
term such that JΣK ` JeK : JσsK. Clearly, it must be the case that

JΣK `
q
p
[
 Σσs/e

]y
: JσsK ,

and the base case is complete.

(Abs) Consider the derivation of synthesis states

〈
φ, p

[
 Ωτ(rσ

]〉
;S

〈
φ∧Ω ′ = Ω, {x :r τ} , p

[
λx : τ. Ω ′σ

]〉
via the inference rule (Abs), and assume the inductive hypothesis holds for
the initial state. Then let M |= φ∧Ω ′ = Ω, {x :r τ}, and let e be a concrete
term such thatΩ ′ `M e : σ. AsM is an assignment in the standard model
of symbolic context constraints, we can derive the typing judgement

Ω, {x :r τ} `M e : σ,

and by application of the DFuzz typing rule for(-introduction, we derive
the typing judgement

Ω `M λx : τ. e : τ(r σ.

Now, for every wildcard

 Ωiσi ∈Wild(p
[
λx : τ. Ω ′σ

]
)/ Ω

′

σ ,

let ei be a concrete term such thatΩi `M ei : σi. As

p
[
λx : τ. Ω ′σ

] [
 Ω

′

σ /e, Ωiσi /ei
]
i
= p

[
 Ωτ(rσ

] [
 Ωτ(rσ

/λx : τ. e, Ωiσi /ei
]
i

,

by application of the inductive hypothesis we arrive at the conclusion that
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the following typing judgement holds:

Σ `M p
[
λx : τ. Ω ′σ

] [
 Ω

′

σ /e, Ωiσi /ei
]
i
: σs

(App) Consider the derivation of synthesis states

〈
φ, p

[
 Ωσ
]〉
;S

〈
φ∧Ω = Ω1 + r ·Ω2, p

[
 Ω1
τ(rσ

 Ω2
τ

]〉
via the inference rule (App), and assume the inductive hypothesis holds
for the initial state. Then letM |= φ∧Ω = Ω1 + r ·Ω2, and let e1 and e2

be concrete terms such that Ω1 `M e1 : τ(r σ and Ω2 `M e2 : τ. As M
is an assignment in the standard model of symbolic context constraints,
via application of the DFuzz rule for(-elimination we derive the typing
judgement

Ω1 + r ·Ω2 `M e1 e2 : σ

(TApp) Consider the derivation of synthesis states

〈
φ, p

[
 Ωσ
]〉
;S

〈
φ, p

[
 Ω∀t.τ[t

′]
]〉

via the inference rule (TApp), and assume the inductive hypothesis holds
for the initial state. Then let M |= φ, and let e be a concrete term such
that Ω `M e : ∀t. τ. By assumption we have σ ≺[t/t ′] τ, so applying
∀-elimination we derive the typing judgement

Ω `M e[t ′] : σ

(Id) Consider the derivation of synthesis states

〈
φ, p

[
 Ωσ
]〉
;S 〈φ∧ γ∧ψ∧Ω = {v :1 τ} , p [v]〉

via the inference rule (Id), and assume the inductive hypothesis holds
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for the initial state. Then let M |= φ ∧ γ ∧ ψ ∧Ω = {v :1 τ}. As M is an
assignment in the standard model of symbolic context constraints, JΩK
contains a use of v, and so we derive the judgement

Ω `M v : τ.

By assumption, γ;ψ ` τ ← σ, so the fact that M |= γ∧ ψ is sufficient to
give

> |= JτK v JσK ,

which combined with DFuzz ’s typing rule v .R immediately implies the
desired judgement

Ω `M v : σ

The rest of the inductive cases are proven in the same manner: assume
the inductive hypothesis to get a model M, use derived synthesis state
constraints and the fact that M is an assignment in the standard model of
symbolic context constraints to apply the appropriate DFuzz typing rule
and derive the required conclusion.

Now we can prove soundness.

Theorem B.4 (Soundness, Reformalized from Theorem 4.18). Let S =

〈σ,C,φk,φs〉 be a synthesis problem. If S;∗ p, then p is a solution to S.

Proof of Theorem B.4. Let s = 〈φ,p〉 be a subproblem such that S;∗ s;F

p. We will show that p |= φS, the correctness constraint induced by S
(Definition 4.4):

1. p is derived from s by an application of (Finish), and so p |=d φs.

2. The solution p is a complete term, so wild (p) = ∅. Further, we know
Sat (φ), so let M be a witness and apply Lemma B.3 to derive the desired
judgement

ΓC `M p : σ
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A natural consequence ofM |= φ is thatM |= φk.

Since p satisfies the two conditions necessary for p |= φS, p is a solution
of S.

B.3 Proof of Relative Completeness

We cannot derive all possible programs p from a given synthesis problem.
Our inference rules place the following restrictions on p:

1. pmust contain only primitives from C, and

2. p cannot contain type-, size-, or sensitivity-abstractions.

These restrictions are necessary to ensure the search is well-defined and
to avoid undecidability in the type system. An algorithm derived from
our inference rules should be able (given reasonable assumptions about
fair application of inference rules) to find any such p that is a solution
to the given synthesis problem. This formalizes our notion of relative
completeness:

Theorem B.5 (Relative Completeness, Reformalized from Theorem 4.19).
Let S = 〈σ,C,φk,φs〉 be a synthesis problem, and let p be a solution to S. Then
S;∗ 〈φ, p〉 where p is complete and Sat (φ).

Proof of Theorem B.5. Let p be a solution. Then there is an application of
rules that — if we ignore constraints and focus just on the types and
structure — will generate p. Since p is a solution it is clearly a complete
term, so we just need to show Sat (φ).

First, note that p a solution to S implies there is some assignment M
such that ΓC `M p : σ andM |= φk.

Clearly p is closed, as it is a solution - our goal is to show Sat (φ). Letϕ
be a conjunct from φ. There are two kinds of conjuncts that can be added
to φ:
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1. A symbolic context constraint: Our inference rules are inversions of DFuzz
typing rules, and the symbolic context constraints produced are the most
general restriction to still allow type-checking. As such, since ΓC `M p : σ,
it must be thatM |= ϕ.

2. An abduction constraint: Abduction constraints encode constraints to allow
subtyping. However, since the subtyping relation is encoded in the type
judgement, and ΓC `M p : σ, by abduction most-generality,M |= ϕ.

Therefore,M |= φ and Sat (φ).

B.4 Pruning the Search

Observe that each inference rule that generates constraints does so by
conjoining them to the old constraints. This forms the basis of a pruning
strategy:

Theorem B.6 (Pruning). Let s = 〈φ, p〉 be a subproblem, and let s ′ = 〈φ ′, p ′〉
be a subproblem such that s;∗ s ′. Then Unsat (φ)⇒ Unsat (φ ′).

Proof of Theorem B.6. Since φ ′ is derived from φ by conjoining new obliga-
tions, φ ′ ⇒ φ. So Sat (φ ′) ⇒ Sat (φ), which is the contrapositive of our
claim.

Using Theorem B.6, it is easy to see that we never need to explore a
branch of the search that has an unsatisfiable proof obligation. Any syn-
thesis state derivable in that branch will never have a satisfiable obligation,
and consequently we will never be able to apply the inference rule (Finish)
to return a synthesis solution.
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B.5 Subtyping Constraint Abduction

To complete the inference rules defining our abduction judgement, we
must add two rules excluded from the paper. The first rule is that for
precise real numbers:

(Real)
>;S = S ′ `∅ R[S]← R[S ′]

And the second rule is that for tuples:

γ;ψ `A σ1 ← σ2 δ;φ `B τ1 ← τ2
(Tuple)

γ∧ δ;ψ∧ φ `A∪B 〈σ1, τ1〉 ← 〈σ2, τ2〉

B.6 Proof of Abduction Most-Generality

Proof of Theorem 4.11. The proof proceeds by induction over the inference
rules defining abduction. Assume γ;ψ ` σ ← τ, and let δ and φ be
constraints such that δ;φ ` σ← τ:

(Refl) By hypothesis, γ = > and ψ = >, so the claim is trivially true.

(LVar) By assumption, t has no free sensitivity variables. The only way to subtype,
then, is to make v = t. Therefore, for all assignmentsM |= δ∧ φ, it must
be the case thatM |= v = t, and so the claim holds.

(RVar) Symmetric to the above case.

(Nat) If σ = N[S] and τ = N[S ′], the only way to subtype is to ensure S = S ′.
Therefore, for all assignments M |= δ ∧ φ, it must be the case that M |=

S = S ′, and so the claim holds.

(Real) Symmetric to the above case.
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(List) By assumption, σ = L(σ ′)[S] and τ = L(τ ′)[S ′], and γ;ψ ` σ ′ ← τ ′. Now,
by the induction hypothesis, δ ∧ φ ⇒ γ ∧ ψ. Of course, since δ ∧ φ is
enough to ensure subtyping, by a symmetric argument to the previous
case for any assignment M |= δ ∧ φ, it must hold that M |= S = S ′. So
δ∧ φ⇒ γ∧ψ∧ S = S ′, and the claim holds.

(MSet) By assumption, σ = mset [σ ′] [S] and τ = mset [τ ′] [S ′], and γ;ψ ` σ ′ ← τ ′.
By the induction hypothesis, δ∧φ⇒ γ∧ψ, and by a symmetric argument
to the previous case, using the subtyping rule for precise multisets, we
arrive at the fact that for any assignmentM |= δ∧ φ, it must be true that
M |= S ′ 6 S, and so the claim holds.

(Modal) Symmetric to the above case.

(Arrow) By assumption, σ = σ1 ( τ1 and τ = σ2 ( τ2, and γ;ψ ` σ2 ← σ1 and
γ ′;ψ ′ ` τ1 ← τ2. By induction, δ ∧ φ ⇒ γ ∧ ψ and δ ∧ φ ⇒ γ ′ ∧ ψ ′.
Therefore, δ∧ φ⇒ γ∧ψ∧ γ ′ ∧ψ ′, and the claim holds.

(Monad) Symmetric to the proof for the codomain in the above case.

(Tuple) Symmetric to two copies of the above case.

(ForAll) By assumption, σ = ∀α.σ ′ and τ = ∀β. τ ′, and γ;ψ `A σ ′ [α/ρ]← τ ′ [β/ρ]

with ρ /∈ A. As variables are only put in A via application of (LVar)
or (RVar), we know that ρ is unconstrained by γ and ψ. By induction
δ∧φ⇒ γ∧ψ, and as ρ is unconstrained this continues to hold when ρ is
abstracted out of σ and τ.

As all cases are covered, the proof is complete.

B.7 Proof of Equisatisfiability

Proof of Theorem 4.17. One direction is straightforward: any model ofφd∧
φc must also choose values for the sensitivity variables present in the



202

symbolic contexts defined in φc. So if A |= φd ∧ φc, it must also be that
A |= φd ∧ ∆(φc).

For the other direction, let A be a model such that A |= φd ∧ ∆(φc)

and—without loss of generality—contains only variables that appear in
φd ∧ ∆(φc). By construction,

φc =

n∧
i=1

Cl,i = Cr,i,

and

∆(φc) =
∧

x∈Support(φc)

n∧
i=1

Sl,ix = Sr,i
x ∧ φl,ix ∧ φrix .

Let ψx,i be a conjunct in ∆(φc) of the form that is, for fixed x and i,

ψx,i := S
l,i
x = Sr,i

x ∧ φl,ix ∧ φrix

for some fixed x and i.
Note that, by construction,ψx,i is an equality constraint in the theory of

non-linear real arithmetic. Therefore, we can rewriteψx,i into the following
form:

ψx,i := p(s1, . . . , sn, rΩ1
x , . . . , rΩmx ) = 0 ∧ φl,ix ∧ φrix ,

where p is some polynomial in n+m variables, s1, . . . , sn are sensitivity
variables that appear explicitly in the untransformed φc, and rΩ1

x , . . . , rΩmx
are fresh sensitivity variables introduced in the construction of the sym-
bolic sensitivity constraint ∆(φc).

We will use ψx,i to construct an extension of A—which we will call
Ax,i—as follows:

Ax,i(Ωk) :=


{
x :

A
(
r
Ωk
x

) τx
}

ifΩk is not bound

A(Ωk) ∪
{
x :

A
(
r
Ωk
x

) τx
}

ifΩk is already bound
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for 1 6 k 6 m, and Ax,i = A everywhere else. The type τx can either
be inferred from φc (if x has a provided type, uniqueness is guaranteed
by preservation of type safety during synthesis), or consistently set to an
arbitrary type.

Now, we can define the model AS as follows:

AS := (. . . (Ax1,i1)x2,i2 . . . )xs,is ,

where xj, ij ∈ Support(φc) × {1, 2, . . . ,n} and s = |Support(φc)| · n. That
is, we extend our initial model A by every formula ψx,i present in ∆(φc).

As AS is an extension of A, we naturally have AS |= φd. It just remains
to be seen that AS |= φc.

Let ϕ := Cli = Cri be a conjunct of φc. By construction, AS binds all
variables that appear in ϕ, but it is not immediately the case that AS |= ϕ.
Assume, for the sake of contradiction, that AS 6|= ϕ. As context equality is
variable-wise, there are only three ways for AS to fail to satisfy ϕ:

1. There exists expression variable x such that (x :R τ) ∈ AS(C
l
i) and (x :R ′

σ) ∈ AS(C
r
i), but σ 6= τ. By construction, if σ or τ appear in a concrete

context inCli orCri , then they appear uniquely and so all instances of xwill
be given that concrete type in AS. If σ and τ do not appear in the symbolic
contexts, then, again by construction, all instances of x are given the same
type in AS.

2. There exists expression variable x such that (x :R τ) ∈ AS(C
l
i) and (x :R ′

σ) ∈ AS(C
r
i), but AS(R) 6= AS(R

′). By choice of model, all sensitivity
variables that might appear in R or R ′ were already defined in A. Since
A |= ∆(φc), A |= R = R ′, giving us an immediate contradiction.

3. There exists some expression variable x such that (without loss of gener-
ality) x ∈ Dom(AS(Cli)) but x /∈ Dom(AS(Cri)). Instead of treating finite
contexts as finite sets of bindings, instead we can simply interpret finite con-
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texts as if they bound all expression variables, only finitely-many of which
have non-zero sensitivity. Then the domain of every context in the model
AS is all possible expression variables, and this case effectively reduces
down to the other two.

Consequently, AS |= ϕ. The above argument applies to all conjuncts of
φc, and so AS |= φc and the desired result follows immediately.
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c proofs for probabilistic trace abstraction

C.1 Proving Proof Rules

Proof of Theorem 5.1. By definition of the semantics, the output distribution
of a program P on input state s is

JPK (s) =
∑
τ∈L(P)

JτK (s)

Hence for any input state s ∈ ϕpre, we have

JPK (s)(ϕpost) =
∑
τ∈L(P)

JτK (s)(ϕpost) 6
∑

τ∈L(A)

JτK (s)(ϕpost) 6 s(β)

by the trace inclusion and failure probability upper bound conditions.

Proof of Theorem 5.5. Let s ∈ ϕpre be any input state satisfying the pre-
condition. For each automaton Ai, the pre-condition inclusion condition
implies that s ∈ ϕpre ⊆ λi(qin

i ) and so Theorem 5.4 gives∑
τ∈L(Ai)

JτK (s)(λi(qac
i )) 6 s(κi(qac

i ))

By the post-condition inclusion property, we also have ϕpost ⊆ λi(qac
i ) and

so ∑
τ∈L(Ai)

JτK (s)(ϕpost) 6 s(κi(qac
i )).

Finally we can conclude by the trace inclusion and failure probability
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upper bound conditions:

JPK (s)(ϕpost) =
∑
τ∈L(P)

JτK (s)(ϕpost)

6
n∑
i=1

∑
τ∈L(Ai)

JτK (s)(ϕpost)

6
n∑
i=1

s(κi(q
ac
i )) 6 s(β)

Proof of Theorem 5.4. We first consider the simpler case when A has no
directed loops. In such an automaton, the valuation of the deterministic
variables Vdet at any node qi is the same for all execution traces starting at
qin with initial state s0 and reaching qi; we write vi for these valuations,
and we write vin and vac for these valuations at qin and qac, respectively.

We need to work with a slightly more general version of well-labeled
automata, where the initial and final nodes are labeled by a function of the
deterministic variables Vdet. We show that for any initial state s0 ∈ λ(qin),
we have ∑

τ∈L(A)

µ(λ(qac)) 6 vac(κ(qac)) − vin(κ(q
in)).

where µ = JτK (s0) is the output distribution. Note that when κ(qin) = 0
and κ(qac) is labeled by input variables V in only, we recover:∑

τ∈L(A)

µ(λ(qac)) 6 s0(κ(q
ac)).

The proof is by induction on the number k of branches (i.e., nodes with
two outgoing e

In the base case k = 0, the automaton represents a sequential composi-
tion st1; · · · ; stn. Let the corresponding nodes be q0, . . . ,qn, with q0 = q

in
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and qn = qac. Since the probability labels λ(qi) depend on deterministic
variables only, given any initial state s0 ∈ κ(q0) there is a sequence of valu-
ations v0, . . . , vn for the deterministic variables such that the deterministic
variables Vdet of any state with non-zero probability in Jst1; · · · ; stiK (s0) are
set to vi, with v0 = s0(V

det). By the well-labeled condition, we have:

`vi(κ(qi))−vi−1(κ(qi−1)) {λ(qi−1)∧ V
det = vi−1} sti {λ(qi)∧ Vdet = vi}

By the sequential composition rule of the union bound logic, we have

`vn(κ(qac))−v0(κ(qin)) {λ(q
in)∧ Vdet = v0} st1; · · · ; stn {λ(qac)}

By definition, vn = vac and v0 = vin so we have

`vac(κ(qac))−vin(κ(qin)) {λ(q
in)∧ Vdet = vin} st1; · · · ; stn {λ(qac)}

and we conclude by soundness of the union bound logic.
Now, suppose there are k > 0 branches in A. Starting from the initial

node qin, let the first branching node be qr with outgoing edges to qt and
qf, labeled by assume(b) and assume(¬b) respectively. We letA0 be the sub-
automaton with initial node qin and final node qr; note that this automaton
is a single path along nodes q0 = q

in,q1, . . . ,qr with edge labels st1, . . . , str.
Letting µr = JA0K (s0) be the output distribution of this automaton, the
base case yields ∑

τ∈L(A0)

µr(λ(qr)) 6 vr(κ(qr)) − vin(κ(qin)).

Now, we consider the rest of the automaton. Let At be the sub-automaton
of all reachable nodes starting from qt, and let Af be the sub-automaton
starting from qf. Note that At and Af are both well-labeled automata
with entry nodes qt and qf respectively, and have at most k− 1 branching
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nodes each. Since the assume statements do not modify this variables, v is
also the deterministic valuation of Vdet at the entry nodes of qt and qf. By
induction, for any state s ∈ λ(qb) such that s(Vdet) = vr and b ∈ {t, f} we
have ∑

τ∈L(Ab)

JτK (s)(λ(qac)) 6 vac(κ(qac)) − vr(κ(qb))

To combine our bounds for A0,At,Af back together, we assume that the
state labels at the branching node qr satisfy

λ(qr) ⊆ λ(qt) ∩ {s | s(b)} and λ(qr) ⊆ λ(qf) ∩ {s | s(¬b)}.

If either fails, then the edge condition for well-labeled automata ensures
that vac(qac)−vr(qr) > vr(qb)−vr(qr) > 1 and so vac(qac)−vin(q

in) > 1,
and our target bound is trivial. Now, every trace in L(A) is of the form
q0, . . . ,qr,qb, . . . ,qac for b = t or b = f; since A has no loops, the trace
after qr is entirely contained in Ab.

Now, we decompose µr = µt + µf + µerr into three pieces:

1. µerr is the restriction to states not in λ(qr);

2. µt is the restriction to states in λ(qr) with b is true;

3. µf is the restriction to states not in λ(qr) with b false.

Note that all states in the support of µt and µf lie in λ(qt) and λ(qf),
respectively. Since A0,At,Af are all loop free with at most k− 1 branches,
applying the induction hypothesis gives
∑

τ∈L(A)

JτK (s0)(λ(qac)) 6 bind(µt, JAtK)(λ(qac)) + bind(µf, JAfK)(λ(qac)) + |µerr|

6 |µt| · (vac(κ(qac)) − vr(κ(qt))) + |µf| · (vac(κ(qac)) − vr(κ(qf)))

+ (vr(κ(qr)) − vin(κ(q
in)))

6 |µt| · (vac(κ(qac)) − vr(κ(qr))) + |µf| · (vac(κ(qac)) − vr(κ(qr)))

+ (vr(κ(qr)) − vin(κ(q
in)))

= (|µt|+ |µf|) · vac(κ(qac)) + (1 − |µt|− |µf|) · vr(κ(qr)) − vin(κ(qin))

6 vac(κ(qac)) − vin(κ(q
in))
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where the first inequality is due to semantics, the second is the inductive
hypothesis, the third uses κ(qr) 6 κ(qb), and the fourth relies on κ(qr) 6
κ(qac).

Finally, we consider the general case where Amay have directed loops.
The basic idea is to reduce to the acyclic case we have just considered by
performing finite unrollings of A. The argument uses standard construc-
tions on automata and regular expressions (see, e.g., prior work giving
an algebraic view of program schemes (Angus and Kozen, 2001)); we
just sketch the proof here. Let C be the set of all statements appearing
in A. We can view A as a deterministic automaton D over the alphabet
Σ = Q × Q × C by viewing each transition qi

st−→ qj as a transition on
letter (qi,qj, st). To make this a deterministic automaton, we can add a
new dead node qdead with a self loop on all letters, and add a transition
from every existing node q ∈ Q to qdead on all letters that don’t appear as
outgoing transitions from q in A. Then, we mark qac as the sole accepting
node in D. Now, the language LD accepted by D is evidently equal to the
language L(A) of all traces in A.

By Kleene’s theorem, this language can also be represented as a regular
expression R over Σ. Now, we can define finite unrollings in terms of
R. For n ∈ N, let Rn be the regular expression obtained by repeatedly
replacing each sub-term r∗ where r is star-free by the finite approximation
1 + r+ · · ·+ rn; the order of replacement will not matter for our purposes.
Now L(R) = ∪nL(Rn), and L(Ri) ⊆ L(Rj) for all i 6 j. Again by Kleene’s
theorem, the language of each Rn is recognized by a deterministic finite
automaton; let Dn be a minimal automaton for each Rn.

Now since the language of Rn is finite and Dn is minimal, the only
cycles in Dn must occur as self-loops on a single (non-accepting) dead
node pn. All transitions from the initial node to non-dead nodes must be
labeled by (qin,−,−). There are at most two such transitions since there
are at most two transitions out of qin in the original automaton A, and if



210

there are two transitions they must be of the form (qin,qt, assume(b)) and
(qin,qf, assume(¬b)). By a similar inductive argument, each non-dead node
has at most two outgoing transitions to non-dead nodes and if there are two
transitions, they are of the form (q,qt, assume(b)) and (q,qf, assume(¬b)).
Thus, we can associate each nodep inDn with a nodea(p) inA and convert
Dn to a well-labeled acyclic automatonAn by labeling λ(p) := λ(a(p)) and
κ(p) := κ(a(p)) and removing the dead node; note that L(An) = L(Dn) =

L(Rn).
Finally, let s be any initial state in λ(qin). By reduction to the acyclic

case, we have ∑
τ∈L(An)

JτK (s)(λ(qac)) 6 s(κ(qac))

for every n ∈ N. Since the left-hand side is increasing in n and bounded
above by s(κ(qac)), the limit exists and we have

lim
n→∞

∑
τ∈L(An)

JτK (s)(λ(qac)) 6 s(κ(qac)).

But since L(An) is increasing and ∪nL(An) = L(A), we conclude∑
τ∈L(A)

JτK (s)(λ(qac)) 6 s(κ(qac)).

C.2 Proofs of Soundness

Proof of Theorem 5.11. We show by induction on the derivation of rules
used by the algorithm that the automaton set A is always well-labeled,
and each automaton in A satisfies the pre- and post-condition inclusion
properties in Theorem 5.5. The base case, rule init, is trivial. Each trace
added to the automaton set by trace is well-labeled by construction, and
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the simplification rules generalize and merge keep the automaton set
well-labeled by definition (Lemma 5.10). Finally, if the termination rule
correct fires, then the automata are well-labeled and satisfy pre- and
post-condition inclusion properties by induction, and the side-conditions
guarantee the trace inclusion and failure probability upper bound condi-
tions. Therefore by Theorem 5.5, the accuracy judgment is valid.

We first begin by proving the following lemma, which captures cor-
rectness of the encoding of τ. Specifically, the following lemma formalizes
the correspondence between models of the encoding and the support of
the output distribution of τ: we show that for any initial state s, the mod-
els of the logical encoding correspond to a set of states Rs and a failure
probability c such that JτK (s)(Rs) 6 c.

Lemma C.1 (Soundness of enc). Fix trace τ = st1; · · · ; stn. Let

ϕ := ω0 = 0 ∧ h0 = false ∧
n∧
i=1

enc(i, sti)

where all uninterpreted functions resulting from distribution axiom families have
been given a fixed interpretation. Fix a state s ∈ S. LetM1, . . . ,Mm be the set of
models of ϕ such that s(V in) =Mi(V

in) andMi(hn) = false, for all i ∈ [1,m].
Let

Rs = {s ′ | s ′(V) =Mi(V)}

Then, for any Ms |= ϕ such that Ms(V
in) = s(V in), we have JτK (s)(Rs) 6

Ms(ωn).

Proof of Lemma C.1. Note that all models Ms |= ϕ such that Ms(V
in) =

s(V in) agree on the value of ωi. This is because the constraints ωi are
functions of V in. Next, note that by construction, there is alwaysMs |= ϕ,
so ϕ is never unsatisfiable.
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We proceed by induction on the length of τ. For n = 1, we have three
cases. Fix an s as in lemma statement.

Case 1 τ = v ← e. We have ϕ := v = e ∧ ω1 = 0 ∧ h1 = false (after simplifica-
tion). From ϕ,Ms(ω1) = 0. Therefore, lemma states: Jv← eK (s)(Rs) 6 0.
Suppose this does not hold, then, by definition of Jv← eK, there is a state
s ′ ∈ S \ Rs such that s ′ = s[v 7→ s(e)]. However, by definition of ϕ, s ′ ∈ Rs,
sinceMi(V) = s

′(V), for some i.

Case 2 τ = assume(b). We have ϕ := ω1 = 0 ∧ (h1 = ¬b) (after simplification).
From ϕ, Ms(ω1) = 0. Therefore, lemma states: Jassume(b)K (s)(Rs) 6 0.
Suppose this does not hold, then, by definition of Jassume(b)K, we have
s ∈ S \ Rs and s(b) = true. However, by definition of ϕ, s ∈ Rs, iff
s(b) = true.

Case 3 τ = v ∼ d. We haveϕ := ω1 = eub∧h1 = ϕ
ax (after simplification). Lemma

states that Jv ∼ dK (s)(Rs) 6Ms(eub). This follows from the definition of a
distribution axiom: that Prv∼d [ϕ

ax] 6 eub is true for any valuation of V \ {v}.

Assume that lemma holds for traces of length n. We show that it also
holds for n+ 1, where τ ′ is a trace of length n.

Case 1 τ = τ ′; v← e. The encoding is ϕ := ϕ ′∧ v = e ∧ωn+1 = ωn∧hn+1 = hn.
LetM ′1, . . . ,M ′m and R ′s be defined for ϕ ′ and τ ′, as per lemma statement.
By hypothesis, Jτ ′K (s)(R ′s) 6 Ms(ωn). By semantics of assignment, we
have Jτ ′; v← eK (s)(X) 6 Ms(ωn+1), where X = {s | s ′ ∈ R ′s, s = s ′[v ←
s ′(e)]}. Observe that X = Rs: by definition of ϕ, its models are a subset of
{M ′1, . . . ,M ′m} such that v = e. It then follows that JτK (s)(Rs) 6Ms(ωn+1).

Case 2 τ = τ ′; assume(b). The encoding is ϕ := ϕ ′ ∧ ωn = ωn−1 ∧ (hn =

(hn−1 ∨ ¬b)). Let M ′1, . . . ,M ′m and R ′s be defined for ϕ ′ and τ ′, as per
lemma statement. By hypothesis, Jτ ′K (s)(R ′s) 6Ms(ωn). We know that
models {Mi} of ϕ are a subset of {M ′i} where b is true. Therefore Rs ⊇ R ′s.
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But we have that all states in Rs \ R ′s are those were b is false. By defini-
tion of Jassume(b)K, all those states are assigned probability 0. Therefore,
JτK (s)(Rs) 6Ms(ωn+1).

Case 3 τ = τ ′; v ∼ d. The encoding is ϕ := ϕ ′ ∧ ωn+1 = ωn + eub ∧ hn+1 =

(hn∨ϕ
ax). LetM ′1, . . . ,M ′m and R ′s be defined forϕ ′ and τ ′, as per lemma

statement. By hypothesis, Jτ ′K (s)(R ′s) 6Ms(ωn). Let X be the set of all
states that satisfy ¬ϕax. From ϕ, we know that Rs = R ′s ∩ X. By the union
bound and the distribution axiom, Jτ ′; v ∼ dK (s)(R ′s ∪ X) 6Ms(ωn+1)

Now, correctness of Theorem 5.15 follows from Lemma C.1.

Proof of Theorem 5.14. Soundness of the Bernoulli and Uniform axioms is
straightforward. The Laplace axiom is Barthe et al. (2016c, Lemma 5). The
exponential axiom follows from the Laplace axiom, noting that

s(Exp(v1, v2))(z) 6 2 · s(Lap (v1, v2))(z)

for all z > s(v1), so the failure probability for the exponential axiom is at
most twice the failure probability for the Laplace axiom.

C.3 Proof of Well-Labeling from Interpolants

Proof of Theorem 5.18. Notice that by construction we have λ(qin) := true
and κ(qin) = 0.

We first show that λ(qac) ⇒ ϕpost. By construction of encoding, the
formula

∧n
i=1ϕi ⇒ (¬hn ⇒ ϕpost) is valid. By definition of sequence in-

terpolants, the formula ψn ⇒ (¬hn ⇒ ϕpost) is valid. Therefore ψn[hn 7→
false]⇒ ϕpost is valid. Since ωn does not appear in ϕpost, ∃ωn.ψn[hn 7→
false]⇒ ϕpost is valid.
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Second, we show that ϕpre ⇒ κ(qac) 6 β. By construction, κ(qac) :=

f(V in), where f(V in) is the function that returns, for any valuation of V in,
the largest value of ωn that satisfies ∃V \ V in.∃hn.ψn. By definition of
sequence interpolants: ψn ⇒ ωn 6 β. Since β is over V in, we have ∃V \

V in.∃hn.ψn ⇒ ωn 6 β is valid. Pick a model M of ϕpre with the largest
possibleωn interpretation that satisfies ∃V \V in.∃hn.ψn. By construction
of the encoding this model exists, since any model satisfying ϕpre can be
extended to a model of

∧
iϕi. It follows that this model satisfiesωn 6 β.

Finally, we need to show that for every edge qi
st−→ qj, where j = i+ 1,

we have
`wpf(κ(qj),st)−κ(qi) {λ(qi)} st {λ(qj)}

We break up the proof by statement type:

Assignment From definition of seq. interpolants, we know the following is valid

ψi ∧ v = e ∧ωj = ωi ∧ hj = hi ⇒ ψj

Set hi to false on left-hand side of implication. The following is valid:

ψi[hi 7→ false]∧ v = e ∧ωj = ωi ∧ hj = false⇒ ψj

It follows that we can set hj to false on both sides, resulting in the following
valid statement:

ψi[hi 7→ false]∧ v = e ∧ωj = ωi ⇒ ψj[hj 7→ false]

Weaken rhs by existentially quantifyingωj. The following is valid:

ψi[hi 7→ false]∧ v = e ∧ωj = ωi ⇒ ∃ωj.ψj[hj 7→ false]

Sinceωi is, by encoding, a function of V in, we can project it out on the lhs.
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The following is valid:

(∃ωi.ψi[hi 7→ false])∧ v = e ∧ωj = ωi ⇒ ∃ωj.ψj[hj 7→ false]

As a result, we can drop theωj = ωi constraint, resulting in the following
valid statement:

(∃ωi.ψi[hi 7→ false])∧ v = e⇒ ∃ωj.ψj[hj 7→ false]

This implies that the following Hoare triple, since λ(qi) ≡ ∃ωi.ψi[hi 7→
false] and λ(qj) ≡ ∃ωj.ψj[hj 7→ false]:

`c {λ(qi)} st {λ(qj)}

for any c ∈ [0, 1].

It now remains to show that wpf(κ(qj), st) − κ(qi) > 0, for any state s in
λ(qi). From our constraint, for any values ofωi and Vdet that satisfy ∃V \

Vdet. ∃hi.ψi, the same values whereωj = ωi also satisfy ∃V \Vdet. ∃hj.ψj.
Therefore, it is always the case that wpf(κ(qj), st) − κ(qi) > 0

Sample Following a similar simplification path to the one we used for assignment
statements, we arrive at the following valid statement:

(∃ωi.ψi[hi 7→ false])∧ ¬ϕax ⇒ ∃ωj.ψj[hj 7→ false]

Since we know that Pr [[]ϕax] 6 eub, from the applied axiom, this implies
that the following Hoare triple, since λ(qi) ≡ ∃ωi.ψi[hi 7→ false] and
λ(qj) ≡ ∃ωj.ψj[hj 7→ false]:

`eub {λ(qi)} st {λ(qj)}

It now remains to show that wpf(κ(qj), st) − κ(qi) > eub, for any state s in
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enc(i, v← e) := v = e ∧ωi = ωi−1

enc(i, assume(b)) := b ∧ωi = ωi−1

enc(i, v ∼ d) := ¬ϕax ∧ωi = ωi−1 + eub

given: Pr [v ∼ d]ϕax 6 eub

Figure C.1: Simplified logical encoding of statement semantics for feasible
traces

λ(qi).

Following argument from base case of Lemma C.1, we establish the spec-
ification. From our constraint, for any values of ωi and Vdet that satisfy
∃V \ Vdet.∃hi.ψi, the same values whereωj = ωi + eub also satisfy ∃V \

Vdet. ∃hj.ψj. Therefore, it is always the case that wpf(κ(qj), st)−κ(qi) > eub

Assume Similar to sampling statements.

C.4 A Simplified Encoding

The encoding in Section 5.5 is designed for full generality: it assumes
that a trace may be infeasible, which is why it introduces the auxiliary
variables hi to track states that cannot make it through the trace. In the
case where the trace is feasible for some input states, the encoding and
interpolation problems become much simpler by doing away with the
auxiliary hi variables. The simplified version of enc is shown in Figure C.1.

Henceforth we assume that for a trace τ, all Boolean expressions ap-
pearing in assume statements are over Vdet. Second, we assume that there
is a state s such that τ(s) is a distribution.
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Theorem C.2 (Soundness of simplified encoding). The specification `β
{ϕpre} st1, . . . , stn {ϕpost} is valid if the following formula is satisfiable:

∀V ,ωi.

(
ϕpre ∧ω0 = 0 ∧

n∧
i=1

enc(i, sti)

)
=⇒ (ωn 6 β∧ϕpost) (C.1)

Theorem C.2 follows from the next lemma:

Lemma C.3 (Soundness of simplified enc). Fix trace τ = st1; · · · ; stn. Let
ϕ := ω0 = 0∧

∧n
i=1 enc(i, sti), where all uninterpreted functions resulting from

distribution axiom families have been given a fixed interpretation. Fix a state
s ∈ S. Let M1, . . . ,Mm be the set of models of ϕ such that s(V in) = Mi(V

in),
for all i ∈ [1,m]. Let

Rs = {s ′ | s ′(V) =Mi(V)}

Then, for anyMi, we have JτK (s)(Rs) 6Mi(ωn).

Proof of Lemma C.3. First, we note that all models Mi |= ϕ agree on the
value ofωi. This is because the constraintsωi are functions of V in. Second,
note that by our assumption, there is always Mi |= ϕ—i.e., it is never
unsatisfiable.

We proceed by induction on the length of τ. For n = 1, we have three
cases. Fix an s as in lemma statement.

Case 1 τ = v ← e. We have ϕ := v = e ∧ ω1 = 0. From ϕ, Mi(ω1) = 0,
for all i. Therefore, lemma states: Jv← eK (s)(Rs) 6 0. Suppose this
does not hold, then, by definition of Jv← eK, there is a state s ′ ∈ S \ Rs
such that s ′ = s[v 7→ s(e)]. However, by definition of ϕ, s ′ ∈ Rs, since
Mi(V) = s

′(V), for some i.

Case 2 τ = assume(b). We have ϕ := b ∧ω1 = 0. From ϕ, Mi(ω1) = 0, for all i.
Therefore, lemma states: Jassume(b)K (s)(Rs) 6 0. Suppose this does not
hold, then, by definition of Jassume(b)K, we have s ∈ S \Rs and s(b) = true.
However, by definition of ϕ, s ∈ Rs, iff s(b) = true.
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Case 3 τ = v ∼ d. We haveϕ := ¬ϕax∧ω1 = eub. Lemma states that Jv ∼ dK (s)(Rs) 6
Mi(eub), for all i. This follows from the definition of a distribution axiom:
that Prv∼d [ϕ

ax] 6 eub is true for any valuation of V \ {v}.

Assume that lemma holds for traces of length n. We show that it also
holds for n+ 1, where τ ′ is a trace of length n.

Case 1 τ = τ ′; v← e. The encoding is ϕ := ϕ ′ ∧ v = e ∧ωn+1 = ωn.

LetM ′1, . . . ,M ′m and R ′s be defined for ϕ ′ and τ ′, as per lemma statement.
By hypothesis, Jτ ′K (s)(R ′s) 6 M ′i(ωn). By semantics of assignment, we
have Jτ ′; v← eK (s)(X) 6 M ′i(ωn+1), where X = {s | s ′ ∈ R ′s, s = s ′[v ←
s ′(e)]}. Observe that X = Rs: by definition of ϕ, its models are a subset of
{M ′1, . . . ,M ′m} such that v = e. It then follows that JτK (s)(Rs) 6Mi(ωn+1),
for all i.

Case 2 τ = τ ′; assume(b). The encoding is ϕ := ϕ ′ ∧ b ∧ ωn = ωn−1. Let
M ′1, . . . ,M ′m and R ′s be defined for ϕ ′ and τ ′, as per lemma statement. By
hypothesis, Jτ ′K (s)(R ′s) 6M ′i(ωn), for all i. We know that models {Mi} of
ϕ are a subset of {M ′i} where b is true. Therefore Rs ⊇ R ′s. But we have that
all states in Rs \R ′s are those were b is false. By definition of Jassume(b)K, all
those states are assigned probability 0. Therefore, JτK (s)(Rs) 6Mi(ωn+1),
for all i.

Case 3 τ = τ ′; v ∼ d. The encoding is ϕ := ϕ ′ ∧ ¬ϕax ∧ ωn+1 = ωn + eub. Let
M ′1, . . . ,M ′m and R ′s be defined for ϕ ′ and τ ′, as per lemma statement. By
hypothesis, Jτ ′K (s)(R ′s) 6M ′i(ωn), for all i. Let X be the set of all states
that satisfy ¬ϕax. From ϕ, we know that Rs = R ′s ∩X. By the union bound
and the distribution axiom, Jτ ′; v ∼ dK (s)(R ′s ∪ X) 6Mi(ωn+1), for all i.

Assume we construct a sequence of interpolants for the above encoding
as described in Section 5.5. Then, the following theorem holds, which is
the same as Theorem 5.18, but without handling hi variables.
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Theorem C.4 (Well-Labelings from Interpolants). Let {ψi}i be the inter-
polants computed as shown above. Let Aτ = 〈Q, δ, λ, κ〉 be the failure automa-
ton that accepts only the trace τ = st1, . . . , stn, i.e., δ = {qin st1−→ q1,q1

st2−→
q2, . . .qn−1

stn−→ qac}. Set the labeling functions as follows:

1. λ(qin) := ϕpre and κ(qin) := 0.

2. λ(qi) := ∃ωi.ψi and λ(qac) := ∃ωn.ψn.

3. κ(qi) := f(Vdet), where f(Vdet) is the function that returns, for any valuation
of Vdet, the largest value of ωi that satisfies ∃V \ Vdet.ψi. For κ(qac), we use
∃V \ V in.ψn.

Then, Aτ is well-labeled and implies `β {ϕpre} τ {ϕpost}.

Proof of Theorem C.4. Similar to the proof of Theorem 5.18.

C.5 Capturing the Union Bound Logic

Our trace abstraction technique is inspired by the union bound logic (aHL),
proposed by Barthe et al. (2016c). The core rules of this program logic
are presented in Figure C.2; the only omitted rules are the ones for the
skip command (trivial to add to our language) and the rules for external
and internal procedure calls (we do not consider interprocedural analysis).
We comment briefly on a few rules; the others are largely standard. The
sampling rule [Rand] encodes distribution axioms. The most complicated
rule is [While]—intuitively, the side-conditions ensure that there is a non-
increasing integer variant ev whose initial value bounds the maximum
number of loop iterations. The program logic also features an interesting
complement of structural rules. Along with the usual rule of consequence
[Weak] and rule of constancy [Frame], the disjunction rule [Or] combines
two pre-conditions (keeping the failure probability unchanged) and the
conjunction rule [And] combines two post-conditions, while summing
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`0 {Φ[v 7→ e]} v← e {Φ}
Assn

∀s. s(Φ)⇒ Pr
Jv∼dK(s)

(¬Ψ) 6 s(β)

`β {Φ} v ∼ d {Ψ}
Rand

`β {Φ} P {Ψ} `β ′ {Ψ} P ′ {Θ}
`β+β ′ {Φ} P ; P ′ {Θ}

Seq

`β {Φ∧ b} P {Ψ} `β {Φ∧ ¬b} P ′ {Ψ}
`β {Φ} if b then P else P ′ {Ψ}

If

∀s,k. s(Φ∧ b ∧ ev = k)⇒ Pr
JPK(s)

(ev > k) = 0

ev : N |= Φ∧ ev 6 0⇒ ¬b `β {Φ∧ b} P {Φ}

`ρ·β {Φ∧ ev 6 ρ} while b do P {Φ∧ ¬b}
While

|= (Φ ′ ⇒ Φ)∧ (Ψ⇒ Ψ ′)∧ (β 6 β ′) `β {Φ} P {Ψ}

`β ′ {Φ ′} P {Ψ ′}
Weak

MV(P) ∩ FV(Φ) = ∅
`0 {Φ} P {Φ}

Frame
`β {Φ} P {Ψ} `β ′ {Φ} P {Ψ ′}

`β+β ′ {Φ} P {Ψ∧ Ψ ′}
And

`β {Φ} P {Ψ} `β {Φ ′} P {Ψ}

`β {Φ∨Φ ′} P {Ψ}
Or `1 {Φ} P {⊥} False

Figure C.2: The union bound logic, core rules (Barthe et al., 2016c)
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failure probabilities. Finally, the rule [False] states that a judgment with
failure probability at most 1 can prove any post-condition.

A minor but important difference between the setting in aHL and
our setting is in the treatment of the failure probability expression β. In
aHL, these expressions range over some fixed set of logical variables, which
appear only in assertions and not in programs. In our setup, we would
model these variables as input variables V in, which may appear in programs
by cannot be modified. We will assume that input variables V in correspond
precisely to the logical variables in aHL.

We will show that our proof technique is complete with respect to the
logic aHL, subject to two restrictions on aHL proofs:

1. The rule [While] is applied to “for”-loops (this can be slightly generalized
to loops with a deterministic variant ev, but we make this restriction to
simplify proofs).

2. The rule [Or] is not used.

Both of these restrictions stem from how our approach keeps track of the
failure probability. Roughly speaking, the original aHL can analyze loops
where the guard is probabilistic but there is a deterministic bound on the
number of iterations. Since our failure probabilities must be deterministic
along the trace, we cannot directly handle such loops. However, these
programs still have a deterministic bound on the number of iterations and
so they can be directly transformed to be of the following form:

while b do P ≡ i← 0; while i < ρ do i← i+ 1; if b then P else skip

The situation with the rule [Or] is similar. If we have two well-labeled
automata modeling the two proofs in the premise, we would like to com-
bine them into a single automata but this is not possible—the labels on the
edges would need to be of the form assume(Φ) or assume(Φ ′), but these
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guards to not appear in the program P. While it does not appear possible to
eliminate the [Or] rule, in our experience this rule is quite rarely used. The
rule can also be avoided entirely by applying a program transformation to
mark the logical cases:

P ≡ if Φ then P else P

and then applying the standard conditional rule [If].
We will prove completeness in two steps. First, we will show that

for any derivable judgment in aHL, there exists a well-labeled automata
modeling the judgment (i.e., satisfying the conditions of Theorem 5.5 for
the given pre-condition, post-condition, failure probability, and program).
Then, we show that well-labeled automata derived from programs can be
found by a run of our algorithm, given some labeling oracle label.

Before we begin, we fix an automata representation of imperative pro-
grams once and for all. Each automaton will have one entry node and one
exit node. The rest of the nodes, edge labels, and transition structure will
be constructed inductively given a program P.

1. Basic statements st ∈ Σ. Automaton with single edge from entry to exit
node labeled by st.

2. Sequential composition P ; P ′. Identify the exit node for the automaton
from P with the entry node for the automaton from P ′.

3. Conditionals if b then P else P ′. Make new entry node, add directed edges
labeled by assume(b) and assume(¬b) to the entry nodes of automata from
P and P ′ respectively, and then identify the exit nodes of the two automata.

4. Loops while b do P. Make new entry node with an assume(b) edge to the
entry node of the automaton for P, and an assume(¬b) edge to a new exit
node. From the exit node of P, add an edge back to the new entry node
labeled assume(b) and an edge to the new exit node labeled assume(¬b).
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We call such automata derived from programs well-structured.

Theorem C.5 (Completeness of Well-Labeled Automata). Let `β {Φ} P {Ψ}

be derivable in the fragment of aHL indicated above. Then there exists a well-
structured and well-labeled automatonA satisfying the conditions of Theorem 5.5
for this accuracy specification.

Proof of Theorem C.5. Let A be the well-structured automaton correspond-
ing to P. We will show that the nodes of A can each be labeled by a
predicate and a failure probability expression, such that the entire au-
tomaton is well-labeled and satisfies the conditions of Theorem 5.5. By
induction on the proof derivation.

[Assn] Label the entry and exit nodes by the pre- and post-condition respectively,
with failure probability 0.

[Rand] Label the entry and exit nodes by the pre- and post-condition respectively,
with failure probability 0 and β.

[Seq] Take the well-labelings for P and P ′ by induction. Label the node at the
join point with invariant Ψ. For each node in the P ′ automaton, add β to
the failure probability label.

[If] Take the well-labelings for P and P ′ by induction. We may label the entry
nodesΦ∧ b andΦ∧¬b while preserving the well-labeling. Label the new
entry node by Φ with failure probability 0, and the new exit node by Ψ
with failure probability β.

[While] Let ρ be the loop upper bound and let i be the loop counter. Take the
well-labeling of the body P by induction. By assumption on the structure
of the while loop, there is a single transition from the body entry node
q0 to another node q1, and it is labeled by i ← i + 1. Furthermore, q0

and q1 are both labeled with failure probability 0. Add the deterministic
expression (i− 1) ·β to all failure probability labels except at node q0, and
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set the failure probability of q0 to be i · β. Label the new initial node by
Φ and failure probability 0, and the new exit node byΦ∧ ¬b and failure
probability ρ · β.

[Weak] Take the well-labeled automaton by induction.

[Frame] Label all nodes by Φ and failure probability 0.

[And] Take the two well-labelings (κ1, λ1) and (κ2, λ2) by induction. By assump-
tion, both of these well-labeled automata have the same structure (given by
the well-structured automaton corresponding to P). Set the new labeling
functions to be κ = κ1 ∧ κ2, and λ = λ1 + λ2.

[Or] Not allowed.

[False] Label the entry node by Φ and failure probability 0. Label all other nodes
by ⊥ and failure probability 1.

Theorem C.6 (Completeness). Let A be a well-structured and well-labeled
automaton. Then, there exists a run of our algorithm in Figure 5.6 given some
labeling oracle labelA that produces A along its execution.

Proof of Theorem C.6. We provide a sketch of the proof. First, our algo-
rithm can recover any loop-free well-labeled automaton (possibly not
well-structured). In a bit more detail, let L(A) be the set of all paths from
entry to exit node; note that this set is finite for loop-free automata. By
repeatedly applying trace, our algorithm can label each of these traces
using the well-labeling in A, yielding a set of well-labeled traces. Then by
repeatedly applying merge, our algorithm can merge all traces and recover
the automaton A.

Now, suppose that A is well-structured but not loop-free. We can
convert A to a loop-free automaton Alf by simply deleting each back edge
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from the exit node of each while loop back to its corresponding entry
node; dropping edges evidently keeps the automaton well-labeled. By
the previous argument, our algorithm can generate Alf by repeatedly
applying trace and merge. Then, we can apply generalize repeatedly to
add the deleted edges, noting that there are at most finitely many such
edges since the originally program has finitely many loops. These new
edges preserve well-labeling and recover A.

As an immediate corollary, we have the following completeness result.

Corollary C.7. Let `β {Φ} P {Ψ} be derivable in the fragment of aHL indicated
above. Then, there exists a run of our algorithm in Figure 5.6 given some labeling
oracle labelA terminating successfully with rule correct.

Proof of Corollary C.7. By Theorem C.5, there exists a well-labeled automa-
ton A proving the specification. By Theorem C.6, there is a run of the
algorithm that constructs this automaton. At that point in the execution,
rule correct applies and the algorithm succeeds.

C.6 Implementation Details

This appendix expands on Section 5.6 by providing additional implemen-
tation details and examples.

Algorithmic Strategy

Our implementation is a determinization of the algorithm presented in
Section 5.4. To ensure that we prove the given specifications by computing
tight upper bounds on failure probability, our implementation aggressively
tries to apply the merge rule—recall that the merge rule allows us take the
maximum failure probability across two automata, instead of the sum.
Specifically, we modify the rule trace to return a set of traces τ1, . . . , τn ∈
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L(P) ∩ L(A). Then, we attempt to simultaneously label all traces with the
same interpolants at nodes pertaining to the same control location. To
ensure that we compute similar interpolants across traces, we attempt to
use the same distribution axiom for the same sampling instruction in all
traces it appears in. Finally, we apply the rule generalize to attempt to
create cycles into the resulting automaton.

The pseudocode in Figure C.3 shows our determinization of the al-
gorithm from Section 5.4. The loop at line 8 goes through axioms as
described below, proposing one axiom in every iteration and checking
it. Notice that for every occurrence of a sampling statement, across all
traces τj, it attempts the same axiom—this is used to force a successful
merge. Line 15 computes interpolants for every trace τj’s encoding Ψj.
This procedure also tries to find the same interpolants for the same con-
trol locations—this ensures success of merge and generalize. In all case
studies in Section 5.6, the algorithm succeeds by considering all traces that
execute 0 or 1 iterations of every loop.

Discovering Axioms

Given a formula of the form ∃f. ∀X.ϕ, we check its validity using a propose-
and-check loop: (i) we propose an interpretation of f and then (ii) check if
∀X.ϕ is valid with that interpretation using the SMT solver (more on this
below). The first step proposes interpretations of f of increasing size, e.g.,
for a unary function f(x), it would try 0, 1, x, x+ 1, etc.

Note that this enumerative approach will encounter many axiom pa-
rameters that are not well-typed or do not satisfy the conditions required
for the parameters. For example, for the Laplace axiom family, we have
f(V in) ∈ (0, 1]. Therefore, any instantiation that may be real-valued and
6 0 or > 1 is rejected.
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1: A← ∅
2: i← 1 . counter
3: while correct does not apply do
4: The following lines implement trace for a set of traces
5: Get all paths τ1, . . . , τn ∈ L(()P) \ L(()A) that go through each loop at most i times.
6: For every τj, let Ψj be the encoding in Theorem 5.15, where different occurrences of the

same sampling statement use the same parameter f(V in) in their distribution axiom.
7: done← false
8: while not done do
9: pick an interpretationM for every f(V in) in {Ψj}j

10: if M |=
∧
j Ψj then

11: done← true
12: axioms←M
13: end if
14: end while
15: Compute interpolants for every Ψj where f(V in) are instantiated by axioms and create

well-labeled automata {Aj}j
16: Add {Aj}j to A
17: The following repeatedly applies merge
18: Apply merge to every pair of automata in A until it does not apply any more
19: The following loop repeatedly applies generalize
20: for every Ai ∈ A do
21: for all q,q ′ in Ai s.t. q,q ′ denote the same loop head in P do
22: Apply generalize to q,q ′ with st ∈ Σ being the loop exit condition
23: end for
24: end for
25: i← i+ 1
26: end while

Figure C.3: Implementation of nondeterministic algorithm in Figure 5.6

Checking Validity

The case studies we consider make heavy use of non-linear arithmetic (e.g.,
x·y
z

+ c > 0) and transcendental functions (namely, log). Non-linear theo-
ries are generally undecidable. To work around this fact, we implement an
incomplete formula validity checker using an eager version of the theorem
enumeration technique recently proposed by Srikanth et al. (2017). First, we
treat non-linear operations as uninterpreted functions, thus overapproxi-
mating their semantics. Second, we strengthen formulas by instantiating
theorems about those non-linear operations. For instance, the following
theorem relates division and multiplication: ∀x,y.y > 0⇒ x·y

y
= x. We

then instantiate x and y with terms over variables in the formula. Of
course, there are infinitely many possible instantiations of x and y; we
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thus restrict instantiations to terms of size 1, i.e., variables or constants.
Our implementation uses a fixed set of theorems about multiplication,

division, and log. These are instantiated for every given formula, typically
resulting in ∼1000 additional conjuncts. To give an intuition, we list some
of those theorems below:

1. ∀x,y.y > 0⇒ x·y
y

= x

2. ∀x,y, z. z > 0⇒ x·y
z

+ x
z
= x·(y+1)

z

3. ∀x,y. x > 0 ∧ y > 0⇒ x · y > 0

4. ∀x,y. x > 0 ∧ y > 0⇒ x
y
> 0

In all of the differentially private algorithms, we can prove correctness
by treating log completely as uninterpreted, requiring no log specific
theorems, just the fact that, e.g., log(x) + log(x) = 2 log(x).

Interpolation Technique

Given the richness of the theories we use, we found that existing proof-
based interpolation techniques either do not support the theories (e.g.,
the MathSAT solver) or fail to find generalizable interpolants, e.g., cannot
discover quantified interpolants (e.g., Z3). As such, we implemented
a template-guided interpolation technique (Albarghouthi and McMillan,
2013; Rummer and Subotic, 2013), where we force interpolants to follow
syntactic forms that appear in the program. Specifically, for every Boolean
predicateϕ appearing in the program, the specification, or the axioms, we
create a template ϕt, which is ϕ but with variables replaced by wildcards.
For instance, given x > y, we generate the template  1 >  2.

Since the failure probabilities, encoded in variablesωi increase addi-
tively by accumulating eub expressions from the distribution axioms, we
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use the template

ωi 6
n∑
j=1

 j ∗ eub
j ,

where eub
j is the failure probability of the axiom used in the jth sampling

statement, assuming there are n such statements along the path, and  j
can take terms of Vdet—following the restriction on labels.

Given a set of templates, our interpolation technique searches for an
interpolant as a conjunction of instantiations of those templates, where
each  i can be replaced by a well-typed term over formula variables.
Given the infinite set of possible instantiations, our implementation fixes
the size of possible instantiations (e.g., to size 1), and proceeds by finding
the smallest possible interpolants in terms of number of conjuncts. If it
cannot, it expands the search to terms of larger sizes. We ensure that
the special variablesωi only appear in their set of inequality predicates
defined above. Therefore, given an interpolant I, we can syntactically
divide it into I = IV ∧ Iω, where IV is over program variables V and
Iω := ωi 6 . . . provides the upper bound on failure probabilities at that
point along the trace.

Proof of Report Noisy Max (noisyMax)

We give an abridged form of the proof computed for Report Noisy Max
in Figure C.4. The set of queries Q is assumed to be non-empty, and
for simplicity, we let b be initialized to 1 instead of ⊥ and modify the
conditional to check if b = 1—resulting in an equivalent program. The
bottom automaton shows a merge of the two paths through the conditional
in the loop. Notice that the propagated error probability is

p · (i− 1)
|Q|
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This is because in each iteration, we apply the Laplace axiom with

f(V in) =
p

|Q|

After k loop iterations, i = k + 1, and therefore we have accumulated a
failure probability of p·(i−1)

|Q|
. (If the program were rewritten so as i starts

at 0 and the loop condition is i < |Q|, we would have the simpler failure
expression p·i

|Q|
.) Finally, we can infer that the total failure probability is p.

This is due to the state label (blue) ϕ.
The label ϕ is defined as the conjunction of the following formulas,

which we simplify for presentation:

|Q|+ 1 > i > 1

i > b > 1

i 6= 1⇒ b < i

∀j ∈ [1, i). |a[j] −Q[j](d)| 6 2
ε

log |Q|

p

∀j ∈ [1, i).a[b] > a[j]

The first two conjuncts specify the range of values i takes throughout
the loop iterations. The third conjunct specifies that i leaps ahead of b
after the first loop iteration, since i is always incremented at the end of
the loop, and b can at most be i− 1 at that point. (The syntactic form of
an implication is derived from the conditional’s predicate.) The fourth
conjunct specifies that, for every element of j of a, its distance from the
corresponding valuation ofQ[j](d) is bounded above by 2

ε
log |Q|

p
, which

follows from the choice of the axiom. Finally, the last conjunct states that
the best element is indeed larger than all previously seen ones.

The last two conjuncts are primarily responsible for implying the post-



231

in 0

ac

in ac

0 0 0

[i 6 |Q|] [i > |Q|]

i = 1 |Q| 6 0

j j

p· (i� 1)

|Q|
p· (i� 1)

|Q|
p· (i� 1)

|Q|
p

jpost

[i 6 |Q|]

[i > |Q|]

i i + 1

a[i] lap(. . .)
q  Qi(d)

e > 0
b, max, i 1,?, 1

a Z[|Q|]

b, max, i 1,?, 1

a Z[|Q|]

e > 0

Figure C.4: Main loop of verification algorithm

condition (via the triangle inequality):

∀j ∈ [1, |Q|].Q[b](d) > Q[j](d) −
4
ε

log |Q|

p

Notice that the 2
ε

log |Q|

p
in the fourth conjunct translates to 4

ε
log |Q|

p
in the

postcondition. This is due to the absolute value.
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d equivalence reduction benchmarks

D.1 Definition of KBO

We provide the standard construction of the Knuth-Bendix order.

Definition D.1 (Knuth-Bendix Order (Zankl et al., 2009)). Let � be a total
order on C, andω : TΣC(X)→ N a linear (with respect to contexts and substitu-
tions) function on programs such that ω(X) = ω0 (for some constant ω0) and
ω(c) > ω0 for all constants c ∈ C. Then> is the KBO parameterized by� and
ω if, for all s, t ∈ TΣC(X):
s > t if and only if |s|x > |t|x for all x ∈ X and

• ω(s) > ω(t), or

• ω(s) = ω(t) and one of the following:

– t is a variable, s 6= t, and s ∈ TΣU({t})
– s = f(s1, . . . , sn) and t = g(t1, . . . , tn) and f � g
– s = f(s1, . . . , sn) and t = g(t1, . . . , tn), f = g, and s1, . . . , sn >lex

t1, . . . , tn.

where U = {f ∈ C | ar (f) = 1}, >lex is the lexicographic lifting of >, and |s|x is
the number of x’s in s.

D.2 Components and Equations

In Tables D.1 to D.3, we provide the full set of components and equations
used in the evaluation in Section 6.7 and describe the benchmarks in
Table 6.3.
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Benchmark Description
Integers
add Integer addition
max Integer maximum from comparisons
min Integer minimum from comparisons

Tuples and integers
add-4 Add 4 integers together
mult-q Multiplication in Q, with rationals as pairs
div-q Division in Q, with rationals as pairs
add-c Addition in C, with complex numbers as pairs
sub-c Subtraction in C, with complex numbers as pairs
add-q-long Addition in Q, with two rationals as four integers
max-pair Element-wise maximum
intervals Join in intervals domain over N
min-pair Element-wise minimum
sum-to-first Sum all pair elements to s, return (s, 0)
sum-to-second Sum all pair elements to s, return (0, s)
add-and-mult Add first pair elements, multiply second
distances Element-wise distance between integers

Strings and integers
str-len Return the longest string
str-trim-len Return the longest trimmed string
str-upper-len Return the longest string, cast to uppercase
str-lower-len Return the longest string, cast to lowercase
str-add Treat strings as integers, returning sum as a string
str-mult Treat strings as integers, returning product as a string
str-max Treat strings as integers, returning maximum as a string
str-split Return string with the most words (whitespace delimited)

Lists and integers
ls-sum Add sums of two lists, returning as a singleton list
ls-sum2 Add two plus the sums of two lists, returning as a singleton
ls-sum-abs Add the absolute value of the sum of two lists
ls-min Compute minimum element of two lists, returning as a list
ls-max Compute maximum element of two lists, returning as a list
ls-stutter Compute sum s of two lists, returning as a list with s copies of s

Table D.1: Descriptions of benchmarks from Table 6.3
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Component Type Description
Integer
add int→ int→ int integer addition
mult int→ int→ int integer multiplication
sub int→ int→ int integer subtraction
abs int→ int absolute value
succ int→ int successor function (increment)
zero int constant 0
one int constant 1
= int→ int→ bool integer equality
!= int→ int→ bool integer inequality
> int→ int→ bool greater-than
>= int→ int→ bool greater-than or equal
< int→ int→ bool less-than
<= int→ int→ bool less-than or equal

Boolean
and bool→ bool→ bool conjunction
or bool→ bool→ bool disjunction
not bool→ bool negation
ite bool→ α→ α conditional branching

String
concat string→ string→ string string concatenation
length string→ int length of string
uppercase string→ string convert string to uppercase
lowercase string→ string convert string to lowercase
trim string→ string remove leading and trailing whitespace
reverse string→ string reverse a string
toInt string→ int convert string to integer
fromInt int→ string convert integer to string
split string→ string→ [string] split string on delimiter
join [string]→ string→ string join list of words with delimiter

Pairs
pair int→ int→ int2 construct tuple of integers
fst int2 → int return first element of a pair
snd int2 → int return second element of a pair

List
maxElement [int]→ int returns maximal element of list
minElement [int]→ int returns minimal element of list
sum [int]→ int adds list of integers
cons int→ [int]→ int adds integer to head of list
cat [int]→ [int]→ [int] concatenates two lists together
singleton int→ [int] singleton list constructor
length [int]→ int length of a list
stutter int→ int→ [int] stutter(n,m) returns a list withm n’s

Table D.2: Synthesis domain used in used in Section 6.7
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Equation Description
Integer
abs(abs(x)) = x idempotence of abs
abs(0) = 0 application of abs to a constant
abs(1) = 1 application of abs to a constant
add(x,y) = add(y,x) commutativity of add
add(x, 0) = x identity of add
add(x, 1) = succ(x) definition of succ
add(x, add(y,z)) = add(add(x,y),z) associativity of add
mult(x, 0) = 0 annihilation by 0
mult(x, 1) = x identity of mult
mult(x,y) = mult(y,x) commutativity of mult
mult(x, mul(y,z)) = mult(mult(x,y),z) associativity of mult
mult(x, add(y,z)) = add(mult(x,y), mult(x,z)) distributivity of add
sub(x, 0) = x right-identity of sub
sub(x,x) = 0 self-annihilation of sub

Comparisons
eq(x,y) = eq(y,x) symmetry of equality
neq(x,y) = neq(y,x) symmetry of inequality
leq(x,y) = eq(x,y)∧ lt(x,y) definition of <=
geq(x,y) = eq(x,y)∧ gt(x,y) definition of >=
lt(x,y) = not(geq(x,y)) alternate definition of >=
gt(x,y) = not(leq(x,y)) alternate definition of <=
eq(x,y) = not(neq(x,y)) alternate definition of !=

Boolean
not(not(x)) = x involutiveness of not
and(x,y) = and(y,x) commutativity of and
and(x, and(y,z)) = and(and(x,y),z) associativity of and
or(x,y) = or(y,x) commutativity of or
or(x, or(y,z)) = or(or(x,y),z) associativity of or
and(true,x) = x identity of and
and(false,x) = false annihilation of and
or(true,x) = true annihilation of or
or(false,x) = x identity of or
or(and(x,y), and(x,z)) = and(x, or(y,z)) distributivity of or
not(and(x,y)) = or(not(x), not(y)) DeMorgan’s law for and
not(or(x,y)) = and(not(x), not(y)) DeMorgan’s law for or
ite(b,x,x) = x equivalence of branching
ite(true,x,y) = x taking the if-then branch
ite(false,x,y) = y taking the else branch

Pairs
fst(pair(x,y)) = x definition of fst
snd(pair(x,y)) = y definition of snd

String
uppercase(uppercase(x)) = uppercase(x) idempotence of uppercase
lowercase(lowercase(x)) = lowercase(x) idempotence of lowercase
trim(trim(x)) = trim(x) idempotence of trim
reverse(reverse(x)) = x involutiveness of reverse
join(split(x,y),y) = x partial inverses
toInt(fromInt(x)) = x partial inverses
add(length(x), length(y)) = length(cat(x,y)) length distribution
cat(uppercase(x), uppercase(y)) = uppercase(cat(x,y)) uppercase distribution
cat(lowercase(x), lowercase(y)) = lowercase(cat(x,y)) lowercase distribution

List
add(sum(x), sum(y)) = sum(cat(x,y)) sum distribution
add(length(x), length(y)) = length(cat(x,y)) length distribution
cat(singleton(x),y) = cons(x,y) definition of cons

Table D.3: All equations used in Section 6.7
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